391 research outputs found

    Neurodegenerative disease diagnosis using incomplete multi-modality data via matrix shrinkage and completion

    Get PDF
    In this work, we are interested in predicting the diagnostic statuses of potentially neurodegenerated patients using feature values derived from multi-modality neuroimaging data and biological data, which might be incomplete. Collecting the feature values into a matrix, with each row containing a feature vector of a sample, we propose a framework to predict the corresponding associated multiple target outputs (e.g., diagnosis label and clinical scores) from this feature matrix by performing matrix shrinkage following by matrix completion. Specifically, we first combine the feature and target output matrices into a large matrix and then partition this large incomplete matrix into smaller submatrices, each consisting of samples with complete feature values (corresponding to a certain combination of modalities) and target outputs. Treating each target output as the outcome of a prediction task, we apply a 2-step multi-task learning algorithm to select the most discriminative features and samples in each submatrix. Features and samples that are not selected in any of the submatrices are discarded, resulting in a shrunk version of the original large matrix. The missing feature values and unknown target outputs of the shrunk matrix is then completed simultaneously. Experimental results using the ADNI dataset indicate that our proposed framework achieves higher classification accuracy at a greater speed when compared with conventional imputation-based classification methods and also yields competitive performance when compared with the state-of-the-art methods

    View-aligned hypergraph learning for Alzheimer’s disease diagnosis with incomplete multi-modality data

    Get PDF
    AbstractEffectively utilizing incomplete multi-modality data for the diagnosis of Alzheimer's disease (AD) and its prodrome (i.e., mild cognitive impairment, MCI) remains an active area of research. Several multi-view learning methods have been recently developed for AD/MCI diagnosis by using incomplete multi-modality data, with each view corresponding to a specific modality or a combination of several modalities. However, existing methods usually ignore the underlying coherence among views, which may lead to sub-optimal learning performance. In this paper, we propose a view-aligned hypergraph learning (VAHL) method to explicitly model the coherence among views. Specifically, we first divide the original data into several views based on the availability of different modalities and then construct a hypergraph in each view space based on sparse representation. A view-aligned hypergraph classification (VAHC) model is then proposed, by using a view-aligned regularizer to capture coherence among views. We further assemble the class probability scores generated from VAHC, via a multi-view label fusion method for making a final classification decision. We evaluate our method on the baseline ADNI-1 database with 807 subjects and three modalities (i.e., MRI, PET, and CSF). Experimental results demonstrate that our method outperforms state-of-the-art methods that use incomplete multi-modality data for AD/MCI diagnosis

    Identification of progressive mild cognitive impairment patients using incomplete longitudinal MRI scans

    Get PDF
    Distinguishing progressive mild cognitive impairment (pMCI) from stable mild cognitive impairment (sMCI) is critical for identification of patients who are at-risk for Alzheimer’s disease (AD), so that early treatment can be administered. In this paper, we propose a pMCI/sMCI classification framework that harnesses information available in longitudinal magnetic resonance imaging (MRI) data, which could be incomplete, to improve diagnostic accuracy. Volumetric features were first extracted from the baseline MRI scan and subsequent scans acquired after 6, 12, and 18 months. Dynamic features were then obtained by using the 18th-month scan as the reference and computing the ratios of feature differences for the earlier scans. Features that are linearly or non-linearly correlated with diagnostic labels are then selected using two elastic net sparse learning algorithms. Missing feature values due to the incomplete longitudinal data are imputed using a low-rank matrix completion method. Finally, based on the completed feature matrix, we build a multi-kernel support vector machine (mkSVM) to predict the diagnostic label of samples with unknown diagnostic statuses. Our evaluation indicates that a diagnosis accuracy as high as 78.2% can be achieved when information from the longitudinal scans is used – 6.6% higher than the case using only the reference time point image. In other words, information provided by the longitudinal history of the disease improves diagnosis accuracy

    Kernel-based Joint Feature Selection and Max-Margin Classification for Early Diagnosis of Parkinson’s Disease

    Get PDF
    Feature selection methods usually select the most compact and relevant set of features based on their contribution to a linear regression model. Thus, these features might not be the best for a non-linear classifier. This is especially crucial for the tasks, in which the performance is heavily dependent on the feature selection techniques, like the diagnosis of neurodegenerative diseases. Parkinson’s disease (PD) is one of the most common neurodegenerative disorders, which progresses slowly while affects the quality of life dramatically. In this paper, we use the data acquired from multi-modal neuroimaging data to diagnose PD by investigating the brain regions, known to be affected at the early stages. We propose a joint kernel-based feature selection and classification framework. Unlike conventional feature selection techniques that select features based on their performance in the original input feature space, we select features that best benefit the classification scheme in the kernel space. We further propose kernel functions, specifically designed for our non-negative feature types. We use MRI and SPECT data of 538 subjects from the PPMI database, and obtain a diagnosis accuracy of 97.5%, which outperforms all baseline and state-of-the-art methods

    Robust Feature-Sample Linear Discriminant Analysis for Brain Disorders Diagnosis

    Get PDF
    Abstract A wide spectrum of discriminative methods is increasingly used in diverse applications for classification or regression tasks. However, many existing discriminative methods assume that the input data is nearly noise-free, which limits their applications to solve real-world problems. Particularly for disease diagnosis, the data acquired by the neuroimaging devices are always prone to different sources of noise. Robust discriminative models are somewhat scarce and only a few attempts have been made to make them robust against noise or outliers. These methods focus on detecting either the sample-outliers or feature-noises. Moreover, they usually use unsupervised de-noising procedures, or separately de-noise the training and the testing data. All these factors may induce biases in the learning process, and thus limit its performance. In this paper, we propose a classification method based on the least-squares formulation of linear discriminant analysis, which simultaneously detects the sample-outliers and feature-noises. The proposed method operates under a semi-supervised setting, in which both labeled training and unlabeled testing data are incorporated to form the intrinsic geometry of the sample space. Therefore, the violating samples or feature values are identified as sample-outliers or feature-noises, respectively. We test our algorithm on one synthetic and two brain neurodegenerative databases (particularly for Parkinson's disease and Alzheimer's disease). The results demonstrate that our method outperforms all baseline and state-of-the-art methods, in terms of both accuracy and the area under the ROC curve

    Deep sparse multi-task learning for feature selection in Alzheimer’s disease diagnosis

    Get PDF
    Recently, neuroimaging-based Alzheimer’s disease (AD) or mild cognitive impairment (MCI) diagnosis has attracted researchers in the field, due to the increasing prevalence of the diseases. Unfortunately, the unfavorable high-dimensional nature of neuroimaging data, but a limited small number of samples available, makes it challenging to build a robust computer-aided diagnosis system. Machine learning techniques have been considered as a useful tool in this respect and, among various methods, sparse regression has shown its validity in the literature. However, to our best knowledge, the existing sparse regression methods mostly try to select features based on the optimal regression coefficients in one step. We argue that since the training feature vectors are composed of both informative and uninformative or less informative features, the resulting optimal regression coefficients are inevidently affected by the uninformative or less informative features. To this end, we first propose a novel deep architecture to recursively discard uninformative features by performing sparse multi-task learning in a hierarchical fashion. We further hypothesize that the optimal regression coefficients reflect the relative importance of features in representing the target response variables. In this regard, we use the optimal regression co-efficients learned in one hierarchy as feature weighting factors in the following hierarchy, and formulate a weighted sparse multi-task learning method. Lastly, we also take into account the distributional characteristics of samples per class and use clustering-induced subclass label vectors as target response values in our sparse regression model. In our experiments on the ADNI cohort, we performed both binary and multi-class classification tasks in AD/MCI diagnosis and showed the superiority of the proposed method by comparing with the state-of-the-art methods

    Learning-based subject-specific estimation of dynamic maps of cortical morphology at missing time points in longitudinal infant studies: Estimation of Cortical Morphological Maps

    Get PDF
    Longitudinal neuroimaging analysis of the dynamic brain development in infants has received increasing attention recently. Many studies expect a complete longitudinal dataset in order to accurately chart the brain developmental trajectories. However, in practice, a large portion of subjects in longitudinal studies often have missing data at certain time points, due to various reasons such as the absence of scan or poor image quality. To make better use of these incomplete longitudinal data, in this paper, we propose a novel machine learning-based method to estimate the subject-specific, vertex-wise cortical morphological attributes at the missing time points in longitudinal infant studies. Specifically, we develop a customized regression forest, named Dynamically-Assembled Regression Forest (DARF), as the core regression tool. DARF ensures the spatial smoothness of the estimated maps for vertex-wise cortical morphological attributes and also greatly reduces the computational cost. By employing a pairwise estimation followed by a joint refinement, our method is able to fully exploit the available information from both subjects with complete scans and subjects with missing scans for estimation of the missing cortical attribute maps. The proposed method has been applied to estimating the dynamic cortical thickness maps at missing time points in an incomplete longitudinal infant dataset, which includes 31 healthy infant subjects, each having up to 5 time points in the first postnatal year. The experimental results indicate that our proposed framework can accurately estimate the subject-specific vertex-wise cortical thickness maps at missing time points, with the average error less than 0.23 mm
    • …
    corecore