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Abstract

Recently, neuroimaging-based Alzheimer’s disease (AD) or mild cognitive impairment (MCI) 

diagnosis has attracted researchers in the field, due to the increasing prevalence of the diseases. 

Unfortunately, the unfavorable high-dimensional nature of neuroimaging data, but a limited small 

number of samples available, makes it challenging to build a robust computer-aided diagnosis 

system. Machine learning techniques have been considered as a useful tool in this respect and, 

among various methods, sparse regression has shown its validity in the literature. However, to our 

best knowledge, the existing sparse regression methods mostly try to select features based on the 

optimal regression coefficients in one step. We argue that since the training feature vectors are 

composed of both informative and uninformative or less informative features, the resulting optimal 

regression coefficients are inevidently affected by the uninformative or less informative features. 

To this end, we first propose a novel deep architecture to recursively discard uninformative 

features by performing sparse multi-task learning in a hierarchical fashion. We further hypothesize 

that the optimal regression coefficients reflect the relative importance of features in representing 

the target response variables. In this regard, we use the optimal regression co-efficients learned in 

one hierarchy as feature weighting factors in the following hierarchy, and formulate a weighted 

sparse multi-task learning method. Lastly, we also take into account the distributional 

characteristics of samples per class and use clustering-induced subclass label vectors as target 

response values in our sparse regression model. In our experiments on the ADNI cohort, we 

performed both binary and multi-class classification tasks in AD/MCI diagnosis and showed the 

superiority of the proposed method by comparing with the state-of-the-art methods.
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Introduction

As the population becomes older, the world is now facing an epidemic of dementia, the loss 

of mental functions such as memory, thinking, and reasoning, each of which is sufficient 

enough to interfere a person’s activities of daily life. Among various causes of dementia, 

Alzheimer’s disease (AD) is the most prevalent in elderly people, rising significantly every 

year in terms of the proportion of cause of death (Alzheimer’s Association 2012). 

Furthermore, it is reported that people with mild cognitive impairment (MCI), known as 

precursor to dementia in AD, progress to AD with an average conversion rate of 10 % per 

year (Busse et al. 2006; Alzheimer’s Association 2012). Although there is currently no 

pharmaceutical medicine to recover AD/MCI back to cognitive normal (CN), it is still 

important to detect the diseases for timely treatments that possibly delay the progress. Thus, 

it is of great interest for AD/MCI diagnosis or prognosis in the clinic.

With the advent of neuroimaging tools such as magnetic resonance imaging (MRI), positron 

emission tomography (PET), and functional MRI, many researchers have been devoting their 

efforts to investigate the underlying biological or neurological mechanisms and also to 

discover biomarkers for AD/MCI diagnosis or prognosis (Li et al. 2012; Zhang and Shen 

2012). Recent studies have shown that information fusion of multiple modalities can help 

enhance the diagnostic performance (Perrin et al. 2009; Kohannim et al. 2010; Walhovd et 

al. 2010; Cui et al. 2011; Hinrichs et al. 2011; Zhang et al. 2011; Westman et al. 2012; Yuan 

et al. 2012; Zhang and Shen 2012; Suk et al. 2015). The main challenge in AD/MCI 

diagnosis or prognosis with neuroimaging arises from the fact that, while the data 

dimensionality is intrinsically high, in general, a small number of samples are available. In 

this regard, machine learning has been playing a pivotal role to overcome this so-called 

“large p, small n” problem (West 2003). Broadly, we can categorize the existing methods 

into a feature dimension-reduction approach and a feature selection approach. The feature 

dimension-reduction approach transforms the original features in an ambient space into a 

lower dimensional subspace, while the feature selection approach finds informative features 

in the original space. In neuroimaging data analysis, feature selection techniques have drawn 

much attention these days, due to its interpretational easiness of the results. In this work, we 

focus on the feature selection approach.

Among different feature selection techniques, sparse (least squares) regression methods, 

e.g., ℓ1-penalized linear regression (Tibshirani 1994), ℓ2,1-penalized group sparse regression 

(Yuan and Lin 2006; Nie et al. 2010), and their variants (Roth 2004; Wang et al. 2011; Wan 

et al. 2012; Zhu et al. 2014), have attracted researchers because of their theoretical strengths 

and effectiveness in various applications (Varoquaux et al. 2010; Fazli et al. 2011; de Brecht 

and Yamagishi 2012; Yuan et al. 2012; Zhang and Shen 2012; Suk et al. 2015).
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For example, Wang et al. proposed a sparse multi-task1 regression and feature selection 

method to jointly analyze the neuroimaging and clinical data in prediction of the memory 

performance (Wang et al. 2011), where ℓ1- and ℓ2,1-norm regularizations were used for 

sparsity and facilitation of multi-task learning, respectively. Zhang and Shen exploited an 

ℓ2,1-norm based group sparse regression method to select features that could be used to 

jointly represent the clinical status, e.g., AD, MCI, or CN, and two clinical scores of Mini-

Mental State Examination (MMSE) and Alzheimer’s Disease Assessment Scale-Cognitive 

(ADAS-Cog) (Zhang and Shen 2012). Varoquaux et al. (2010) formulated the subject-level 

functional connectivity estimation as multivariate Gaussian process and imposed a group 

constraint for a common structure on the graphical model in the population. Suk et al. (2013) 

proposed a supervised discriminative group sparse representation to estimate functional 

connectivity from fMRI by penalizing a large within-class variance and a small between-

class variance of features. Recently, Yuan et al. (2012), Xiang et al. (2014), and Thung et al. 

(2014), independently, proposed a sparse regression-based feature selection method for 

AD/MCI diagnosis to maximally utilize features from multiple sources by focusing on a 

missing modality problem.

In the context of the data distribution, the previous sparse regression methods mostly 

assumed a unimodal distribution for a same group of subjects. However, due to the inter-

subject variability in the same group (Fotenos et al. 2005; Noppeney et al. 2006; 

DiFrancesco et al. 2008), it is highly likely for neuroimaging data to have a complex data 

distribution, e.g., mixture of Gaussians. To this end, Suk et al. (2014) recently proposed a 

subclass-based sparse multi-task learning method, where they approximated the complex 

data distribution per class by means of clustering and defined subclasses to better encompass 

the distributional characteristics in feature selection.

Note that the above-mentioned sparse regression methods find the optimal regression 

coefficients for the respective objective function in one step, i.e., a single hierarchy, using 

the training feature vectors as regressors. Since the training feature vectors are composed of 

both informative and uninformative or less informative features, the resulting optimal 

regression coefficients are inevidently affected by uninformative or less informative 

features2. While the regularization terms drive the regression coefficients of the 

uninformative or less informative features to be zero or close to zero, and thus we can 

discard the corresponding features by thresholding, it is still problematic to find the optimal 

threshold for feature selection. As for the subclass-based feature selection method (Suk et al. 

2014), the clustering is performed with the original full features. Therefore, the clustering 

results can be also affected by uninformative or less informative features, which sequentially 

can influence the sparse multi-task learning, feature selection, and classification accuracy.

1In a least squares regression framework, one task corresponds to find optimal regression coefficients to represent the values of a 
target response variable. So, when we consider multiple target response variables simultaneously, it is regarded as multi-task learning 
(Argyriou et al. 2008).
2In this work, we define the uninformative and less informative features based on their optimal regression coefficients. Specifically, 
the features whose regression coefficients are zero or close to zero, are regarded, respectively, as uninformative or less informative in 
representing the target response variables.
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In this paper, we propose a deep sparse multi-task learning method that can mitigate the 

effect of uninformative or less informative features in feature selection. Specifically, we 

iteratively perform subclass-based sparse multi-task learning by discarding uninformative 

features in a hierarchical fashion. That is, in each hierarchy, we first cluster the current 

feature samples for each original class. Based on the clustering results, we then assign new 

label vectors and perform sparse multi-task learning with an ℓ2,1-norm regularization. It 

should be noted that, unlike the conventional multi-task learning methods, which treat all 

features equally, we further propose to utilize the optimal regression coefficients learned in 

the lower hierarchy as context information to weight features adaptively. We validate the 

effectiveness of the proposed method on the ADNI cohort by comparing with the state-of-

the-art methods.

Our main contributions can be threefold:

• We propose a novel deep architecture to recursively discard uninformative features 

by performing sparse multi-task learning in a hierarchical fashion. The rationale of 

the proposed hierarchical feature selection is that, while the convex optimization 

algorithm finds optimal regression coefficients, it is still affected by the less 

informative features. Therefore, if we can discard uninformative features and 

perform the sparse multi-task learning iteratively, the optimal solution can be more 

robust to less informative features, and thus to select task-relevant features.

• We also devise a weighted sparse multi-task learning using the optimal regression 

coefficients learned in one hierarchy as feature-adaptive weighting factors in the 

next deeper hierarchy. In this way, we can adaptively assign different weights for 

different features in each hierarchy and the features of small weights, which 

survived in the lower hierarchy, are less likely to be selected in the deeper 

hierarchy.

• Motivated by Suk et al.’s work (2014), we also take into account the distributional 

characteristics of samples in each class and define clustering-induced label vectors. 

That is, in each hierarchy, we define subclasses by clustering the training samples 

but with only the selected feature set from the lower hierarchy, and then assign new 

label vectors. By taking this new label vectors as target response values, we 

perform the proposed weighted sparse multi-task learning.

Materials and image processing

Subjects

In this work, we use the ADNI cohort3, but consider only the baseline MRI, 18-fluoro-

deoxyglucose PET, and cerebrospinal fluid (CSF) data acquired from 51 AD, 99 MCI, and 

52 CN subjects4. For the MCI subjects, they were clinically further subdivided into 43 

progressive MCI (pMCI), who progressed to AD in 18 months, and 56 stable MCI (sMCI), 

3Available at ‘http://www.loni.ucla.edu/ADNI’.
4Although there exist in total more than 800 subjects in ADNI database, only 202 subjects have the baseline data including all the 
modalities of MRI, PET, and CSF.
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who did not progress to AD in 18 months. We summarize the demographics of the subjects 

in Table 1.

With regard to the general eligibility criteria in ADNI, subjects were in the age of between 

55 and 90 with a study partner, who could provide an independent evaluation of functioning. 

General inclusion/exclusion criteria5 are as follows: (1) healthy subjects: Mini-Mental State 

Examination (MMSE) scores between 24 and 30 (inclusive), a Clinical Dementia Rating 

(CDR) of 0, non-depressed, non-MCI, and non-demented; (2) MCI subjects: MMSE scores 

between 24 and 30 (inclusive), a memory complaint, objective memory loss measured by 

education adjusted scores on Wechsler Memory Scale Logical Memory II, a CDR of 0.5, 

absence of significant levels of impairment in other cognitive domains, essentially preserved 

activities of daily living, and an absence of dementia; and (3) mild AD: MMSE scores 

between 20 and 26 (inclusive), CDR of 0.5 or 1.0, and meets the National Institute of 

Neurological and Communicative Disorders and Stroke and the Alzheimer’s Disease and 

Related Disorders Association (NINCDS/ADRDA) criteria for probable AD.

Image processing and feature extraction

The MRI images were preprocessed by applying the typical procedures of Anterior 

Commissure (AC)–Posterior Commissure (PC) correction, skull stripping, and cerebellum 

removal. Specifically, we used MIPAV software6 for AC–PC correction, resampled images 

to 256 × 256 × 256, and applied N3 algorithm (Sled et al. 1998) to correct intensity 

inhomogeneity. An accurate and robust skull stripping (Wang 2014) was performed, 

followed by cerebellum removal. We further manually reviewed the skull-stripped images to 

ensure the clean and dura removal. Then, FAST in FSL package7 Zhang et al. (2001) was 

used for structural MRI image segmentation into three tissue types of gray matter (GM), 

white matter (WM) and CSF. We finally parcellated them into 93 regions of interest (ROIs) 

by warping Kabani et al.’s atlas (1998) to each subject’s space via HAMMER (Shen and 

Davatzikos 2002).

In this work, we considered only GM for classification, because of its relatively high 

relatedness to AD/MCI compared to WM and CSF (Liu et al. 2012). Regarding PET images, 

they were rigidly aligned to the corresponding MRI images, and then applied the 

parcellation propagated from the atlas by registration.

For each ROI, we used the GM tissue volume from MRI, and the mean intensity from PET 

as features, which are widely used in the field for AD/MCI diagnosis (Davatzikos et al. 

2011; Hinrichs et al. 2011; Zhang and Shen 2012; Suk et al. 2015). Therefore, we have 93 

features from an MRI image and the same dimensional features from a PET image. In 

addition, we have three CSF biomarkers of Aβ42, t-tau, and p-tau as features.

5Refer to ‘http://www.adniinfo.org’ for more details.
6Available at ‘http://mipav.cit.nih.gov/clickwrap.php’.
7Available at ‘http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/’.
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Method

Notations

In this paper, we denote matrices as boldface uppercase letters, vectors as boldface 

lowercase letters, and scalars as normal italic letters, respectively. For a matrix X = [xij], its 

i-th row and j-th column are denoted as xi and xj, respectively. We further denote a 

Frobenius norm and an ℓ2,1-norm of a matrix X as  and 

, respectively. Let 1q and 0q denote q-dimensional row 

vectors whose elements are all 1 and 0, respectively, and  be a cardinality of a set .

Preliminary

Let  and  denote, respectively, the D neuroimaging features and the 

corresponding class label vectors of N samples8 for C-class classification. In this work, 

without loss of generality, we represent a class label with a 0/1 encoding scheme. For 

example, in a binary classification problem, the class label of each training sample is 

represented by either o1 = [10] or o2 = [01]. Although it is more general to use scalar values 

of +1/ − 1 for a binary classification problem, in this work, for general applicability of the 

proposed method, we use a 0/1 encoding scheme, by which we can naturally apply our 

method to both binary and multi-class classification problems.

In the context of AD/MCI diagnosis, sparse (least squares) regression methods with different 

types of regularizers have been used for feature selection in neuroimaging data (Wang et al. 

2011; Zhou et al. 2013; Suk et al. 2014; Zhu et al. 2014). The common assumption on these 

methods is that the target response values, which comprise the class labels in our work, can 

be predicted by a linear combination of the regressors, i.e., feature values in X, as follows:

(1)

where  is a regression coefficient matrix and R(W) denotes a regularization 

function. Note that, since our main goal is to identify a clinical label based on the 

neuroimaging features, we constrain a common subset of features to be used in predicting 

the target values. In this regard, we can use an ℓ2,1-norm regularizer for R(W) in Eq. (1) and 

define a group sparse regression model (Zhou et al. 2013) as follows:

(2)

where λ denotes a group sparsity control parameter. By regarding the prediction of each 

target vector yi (i ∈ {1, …, C}) as a task, we designate this as sparse multi-task learning 

(SMTL). Due to the use of an ℓ2,1-norm regularizer in Eq. (2), the estimated optimal 

coefficient matrix  will have some zero-valued row vectors, denoting that the 

corresponding features are not useful in prediction of the target response variables, i.e., class 

8In our experiments on the ADNI cohort, we have one sample per subject.
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labels. Furthermore, the lower the ℓ2-norm of a row vector, the less informative the 

corresponding feature in X to represent the target response variables in Y.

In the meantime, while the neuroimaging is highly variable among subjects of a same group, 

the conventional sparse multi-task learning assumes a unimodal data distribution. That is, it 

overlooks the complicated distributional characteristics inherent in samples, and thus can fail 

to select task-relevant features. In this regard, Suk and Shen recently proposed a subclass-

based sparse multi-task learning (S2MTL) method (Suk et al. 2014). Specifically, they used a 

clustering method to discover the complex distributional characteristics and defined 

subclasses based on the clustering results. Then, they encoded the respective subclasses, i.e., 

clusters, with their unique codes. Finally, by setting the codes as new label vectors of the 

training samples, they performed sparse multi-task learning as follows:

(3)

where  denotes a new label matrix and C′ is the total number of response 

variables, i.e., the sum of the number of the original classes and the number of subclasses in 

each original class.

Deep weighted subclass-based sparse multi-task learning

The main limitation of the SMTL and S2MTL methods is that they find the optimal 

regression coefficients and then select task-relevant features based on the regression 

coefficients in one step, i.e., a single hierarchy. However, uninformative or less informative 

features, which are also included in regressors, can affect finding the optimal regression 

coefficients in both Eqs. (2) and (3). Thus, the features selected in a single hierarchy may not 

be optimal for classification. To mitigate the effects of uninformative or less informative 

features in optimizing coefficients and in selecting features, we propose a ‘deep weighted 

subclass-based sparse multi-task learning’ method. Specifically, rather than selecting 

features in one step, we iteratively discard uninformative features and perform sparse multi-

task learning in a hierarchical fashion. In particular, we devise a novel sparse multi-task 

learning with a feature-adaptive weighting scheme under the hypothesis that the optimal 

regression coefficients reflect the relative importance of features in representing target 

response variables. Motivated by Suk and Shen’s work (2014), we also use the S2MTL 

framework combined with the proposed feature weighting scheme to reflect the 

distributional characteristics inherent in samples. Hereafter, we call the proposed method as 

deep weighted S2MTL (DW-S2MTL).

Figure 1 illustrates the overall framework of our method for AD/MCI diagnosis. Given 

multiple modalities of MRI, PET, and CSF, we extract features from MRI and PET, preceded 

by image preprocessing as described in “Image processing and feature extraction”, and then 

concatenate features of all modalities into a long vector for complementary information 

fusion. Using the concatenated features as regressors and the corresponding class labels as 

target response values, we perform the proposed DW-S2MTL for feature selection. In this 

step, we (1) perform S2MTL (clustering and label encoding and multi-task learning), (2) 

select features based on the learned optimal regression coefficients, (3) train a classifier 
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using training samples but with only the selected features, and (4) compute validation 

accuracy. If the validation accuracy is higher than the previous one (initially, we set the 

previous validation accuracy as zero), we iterate the processes of (1) through (4) in a 

hierarchical manner. That is, in the following hierarchy, we consider only the selected 

features along with the corresponding regression coefficients learned from the current 

hierarchy. Once converged, i.e., there is no increase in the validation accuracy, we use the 

current feature set and the corresponding classifier to identify the clinical label of a testing 

sample.

Now, let us describe the proposed method in detail. Assume that, at the h-th hierarchy, we 

have the dimension-reduced training samples , where  denotes a 

set of features selected in the (h – 1)-th hierarchy9, along with the corresponding class labels 

Y. By regarding  and Y as our current training samples, we perform clustering to find 

subclasses for each original class, by which we can facilitate the distributional 

characteristics in samples.

Earlier, Suk et al. (2014) used the K-means algorithm for this purpose due to its simplicity 

and computational efficiency. However, since it requires to predefine the number of clusters, 

i.e., K, for which a cross-validation technique is usually applied in the literature, it is limited 

to use the K-means algorithm in practical applications. To this end, in this work, we use 

affinity propagation (Frey and Dueck 2007), which can automatically select the optimal 

number of clusters and has been successfully applied to a variety of applications (Dueck and 

Frey 2007; Lu and Carreira-Perpinan 2008; Wang 2010; Shi et al. 2011; Alikhanian et al. 

2013). For the details of affinity propagation, please refer to Appendix and Frey and Dueck 

(2007).

After clustering samples in  via affinity propagation, we define subclasses and assign a 

new label to each sample. Let us consider a binary classification problem and assume that 

affinity propagation finds  and  numbers of clusters/exemplars for class 1 and class 

2, respectively. Note that we regard the clusters as subclasses of the original class. Then, we 

define sparse codes for subclasses of the original class 1 and the original class 2 as follows:

where o1 = [10] and o2 = [01] denote the original class labels for class 1 and class 2, 

respectively, , , and  and 

 denote, respectively, subclass-indicator row vector in which only the l-

9  denotes the original full feature set.
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th/m-th element is set to 1 and the others are 0. Thus, the full label set for binary 

classification becomes:

(4)

Now, without loss of generality, based on Eq. (4), we can extend the full label set for C-class 

classification as follows:

(5)

where  and oc 

is a original class indicator row vector. Then, for the n-th training sample  at the h-th 

hierarchy, if it belongs to the original class c and is assigned to a cluster m of the class, then 

its new label vector  is set to .

By regarding the newly assigned label vectors  as target response values, i.e., 

, we can learn the regression 

coefficients of an S2MTL model in Eq. (3). Here, it is noteworthy that the ℓ2-norm of a row 

vector in an optimal regression coefficient matrix quantifies the relevance of the 

corresponding feature in representing the target response variables. In our deep architecture, 

we use such context information to adaptively weight the selected features in the upper 

hierarchy. Specifically, we devise a novel weighted sparse multi-task learning method by 

exploiting the optimal regression coefficients learned in the lower hierarchy as feature 

weighting factors. We define an adaptive feature weighting vector at the h-th hierarchy as 

follows:

(6)
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where  is a normalizing constant. In our adaptive feature weighting 

scheme in Eq. (6), the higher the ℓ2-norm of the optimal regression coefficient vector 

, the smaller the weight for the i-th feature is assigned. By introducing this feature-

adaptive weighting factor into a regularization term of a sparse regression model, we impose 

that in the upper hierarchy, the features of high ℓ2-norm values from the lower hierarchy 

have also high regression coefficients; meanwhile, those of low ℓ2-norm values from the 

lower hierarchy have low regression coefficients and ultimately become zero to be 

discarded. Thus, we formulate a weighted sparse multi-task learning method as follows:

(7)

where , , and ⊙ denotes an 

element-wise matrix multiplication. Note that the feature weights defined in Eq. (6) are used 

to guide the selection of informative features in the current hierarchy by adaptively adjusting 

the penalty levels of different features. That is, by giving small weights for the informative 

features in representing the target responses, we impose the corresponding regression 

coefficients to be larger, and thus to survive in feature selection. We should note that, since 

we use class labels as target responses, features corresponding to low regression coefficients 

would have low discriminative power for the classification of the respective classes. In this 

regard, the proposed method can be effective to remove such features by deep learning.

Based on the optimal regression coefficients , we select the features whose regression 

coefficient vector is non-zero, i.e., . With the selected features, we train a linear 

support vector machine (SVM), which has been successfully used in many applications 

(Zhang and Shen 2012; Suk and Lee 2013), and then compute the accuracy on the validation 

samples. If the validation accuracy is higher than the accuracy in the lower hierarchy10, we 

move to the next level of hierarchy, to further filter out uninformative features (if exist), and 

thus to reduce the dimensionality; otherwise, stop the deep learning. Algorithm 1 

summarizes the overall procedures of the proposed DW-S2MTL method for feature 

selection.

10Initially, we set the current best accuracy zero.
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Algorithm 1

Pseudo algorithm of the proposed DW-S2MTL method.

For better understanding, in Fig. 2, we present an example of applying the proposed DW-

S2MTL for feature selection in binary classification. In the 1st hierarchy, we have the 

training feature samples  and the new label vectors  determined by clustering. In 

this hierarchy, since we have no prior weight information on the features, we treat all the 

features equally by setting . Note that the optimization problem in this 

hierarchy corresponds to S2MTL (Suk et al. 2014). Based on the learned optimal regression 

coefficients , we select a feature set  and define δ(2) by Eq. (6). By taking account 

of the values of the selected features in  and the original class labels Y, we train a linear 

SVM and compute the classification accuracy a(1) on a validation set. If a(1) is greater than 

a(0)(= 0), we set  and the algorithm proceeds to the next hierarchy. For the 2nd 

hierarchy, we construct our feature samples  from  with only the selected features of 

 and define new label vectors  via clustering for each original class with feature 

samples in . We then learn the optimal regression coefficients  by solving Eq. (7) 

with , , and δ(2) as inputs. Again, we select a feature set  based on , and 

train a linear SVM with the feature samples of  but only with features in  and the 

original class labels Y. With the trained SVM, we compute the classification accuracy a(2) 

on a validation set. If the current validation accuracy a(2) is higher than a(1), we update our 

optimal feature set , compute the feature weights δ(3), and proceed to the 3rd 

hierarchy.

In a nutshell, in the h-th hierarchy, we sequentially perform the steps of (1) clustering 

samples to define subclasses and assigning a new label to the samples, (2) learning the 

optimal regression coefficients  by taking into account the features selected in the (h – 
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1)-th hierarchy and the regression coefficients , (3) selecting informative feature set 

based on , (4) reorganizing training and validation samples by discarding the unselected 

features, and (5) training an SVM classifier and computing the validation accuracy a(h). If 

the current validation accuracy is higher than the previous one, i.e., a(h–1), which means that 

the current feature set is better suited for classification than the previous one, we repeat the 

steps from (1) to (5) until convergence, i.e., no improvement in the validation accuracy. Note 

that the number of features under consideration reduces gradually as advancing to the higher 

level in the hierarchy with the respective feature weights determined based on the optimal 

weight coefficients from the one level below.

Experimental results

In this section, we validate the effectiveness of the proposed deep weighted subclass-based 

sparse multi-task learning for feature selection in AD/MCI diagnosis. We conducted two sets 

of experiments, namely, binary and multi-class classification problems. For the binary 

classification, we considered three tasks: (1) AD vs. CN, (2) MCI vs. CN, and (3) 

progressive MCI (pMCI), who converted to AD in 18 months, vs. stable MCI (sMCI), who 

did not converted to AD in 18 months. Meanwhile, for the multi-class classification, we 

performed two tasks of (1) AD vs. MCI vs. CN (3-class) and (2) AD vs. pMCI vs. sMCI vs. 

CN (4-class). In the classifications of MCI vs. CN (binary) and AD vs. MCI vs. CN (3-

class), we labeled both pMCI and sMCI as MCI.

Experimental setting

For performance comparison, we consider five competing methods as follows:

• Sparse multi-task learning (SMTL) (Zhou et al. 2013) that assumes a unimodal data 

distribution and selects features in a single hierarchy.

• Subclass-based SMTL (S2MTL) (Suk et al. 2014) that takes into account a complex 

data distribution and selects features in a single hierarchy.

• Deep weighted SMTL (DW-SMTL) that assumes a unimodal data distribution and 

selects features in a hierarchical fashion using the proposed deep sparse multi-task 

learning with a feature weighting scheme.

• Deep S2MTL (D-S2MTL) that takes into account a complex data distribution and 

also selects features in a hierarchical fashion using the proposed deep sparse multi-

task learning but without a feature weighting scheme.

• Deep weighted S2MTL (DW-S2MTL) that takes account a complex data 

distribution and also features in a hierarchical fashion using the deep sparse multi-

task learning with a feature weighting scheme.

For the S2MTL method, unlike the original work in Suk et al. (2014), we used affinity 

propagation to define classes in order for fair comparison with D-S2MTL DW-S2MTL. It 

should be noted that the main difference among the competing methods lies in the 

characteristics such as the use of data distribution (unimodal or complex), the number of 
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hierarchies (single or multiple), and the use of context information, i.e., feature weights. We 

compare their characteristics in Table 2.

Due to the limited number of samples, we evaluated the performance of all the competing 

methods by applying a tenfold cross-validation technique in each classification problem and 

taking the average of the results. Specifically, we randomly partitioned the samples of each 

class into 10 subsets with approximately equal size without replacement. We then used 9 out 

of 10 subsets for training and the remaining one for testing. We repeated this process 10 

times. It is noteworthy that for fair comparison among the competing methods, we used the 

same training and testing samples in our cross-validation.

Regarding model selection of the sparsity control parameter λ in sparse regression models 

and the soft margin parameter C in SVM (Burges 1998), we defined the parameter spaces as 

λ ∈ {0.001,0.005,0.01,0.05,0.1,0.3,0.5} and C ∈ {2−10, …,25}, and performed a grid search. 

The parameters that achieved the best classification accuracy in the inner cross-validation 

were finally used in testing. In our implementation, we used a SLEP toolbox11 for 

optimization of the respective objective function and an LIBSVM toolbox12 for SVM 

classifier learning. As for the multi-class classification, we applied a one-versus-all strategy 

(Milgram et al. 2006) and chose the class which classified the test sample with the greatest 

margin.

We used 93 MRI features, 93 PET features, and/or 3 CSF features as regressors in all the 

competing methods. Regarding the multimodality neuroimaging fusion, e.g., MRI + PET 

(MP for short) and MRI + PET + CSF (MPC for short), we constructed a long feature vector 

by concatenating features of the modalities.

Performance comparison

Let TP, TN, FP, and FN denote, respectively, true positive, true negative, false positive, and 

false negative. We considered the following metrics to measure the performance of the 

methods:

• ACCuracy (ACC) = (TP + TN)/(TP + TN + FP + FN)

• SENsitivity (SEN) = TP/(TP + FN)

• SPECificity (SPEC) = TN/(TN + FP)

• Balanced ACcuracy (BAC) = (SEN + SPEC)/2

• Positive Predictive Value (PPV) = TP/(TP+FP)

• Negative Predictive Value (NPV) = TN/(TN+FN)

The accuracy that counts the number of correctly classified samples in a test set is the most 

direct metric for comparison among methods. Regarding the sensitivity and specificity, the 

higher the values of these metrics, the lower the chance of misdiagnosing to the respective 

clinical label.

11Available at ‘http://www.public.asu.edu/~jye02/Software/SLEP/index.htm’.
12Available at ‘http://www.csie.ntu.edu.tw/~cjlin/libsvm/’.
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Note that in our dataset, since the number of samples available for each class is imbalanced, 

it is likely to have an inflated performance estimates for two binary classification tasks, i.e., 

MCI (99) vs. CN (52) and pMCI (43) vs. sMCI (56), and one multi-class classification task, 

i.e., AD (51) vs. MCI (99) vs. CN (52). For this reason, we also considered a balanced 

accuracy and positive/negative predictive values (Wei and Dunbrack 2013).

Binary classification results

We summarized the performances of the competing methods with various modalities in 

Tables 3, 4, 5. In discrimination between AD and CN (Table 3), SMTL achieved the ACCs 

of 86.55 % (MRI), 80.45 % (PET), 87.64 % (MP), and 92.45 % (MPC), while S2MTL 

achieved the ACCs of 86.55 % (MRI), 85.36 % (PET), 93.18 % (MP), and 92.36 % (MPC). 

When applying the proposed deep and feature-adaptive weighting scheme to these methods, 

we obtained the ACCs of 88.36 % (MRI), 82.45 % (PET), 90.45 % (MP), and 92.45 % 

(MPC) by DW-SMTL and the ACCs of 90.36 % (MRI), 89.27 % (PET), 93.18 % (MP), and 

95.09 % (MPC) by DW-S2MTL. Note that thanks to the proposed deep and feature-adaptive 

weighting scheme, we could improve the ACCs by 1.85 % (MRI), 2 % (PET), and 2.81 % 

(MP) in comparison between SMTL and DW-SMTL and by 3.91 % (MRI), 3.91 % (PET), 

and 2.73 % (MPC) in comparison between S2MTL and DW-S2MTL. Regarding the 

proposed feature weighting scheme, we could also verify its effectiveness by comparison 

between D-S2MTL and DW-S2MTL. Overall, the proposed DW-S2MTL outperformed the 

other four competing methods. It is worth noting that since the discrimination between AD 

and NC is relatively easier than the other classification tasks described below, all the 

competing methods achieved good performance, i.e., higher than 90 % in accuracy. Thus, 

there is no substantial difference among the competing methods.

For the task of MCI vs. CN classification (Table 4), the proposed DW-S2MTL achieved the 

best ACCs of 77.57 % (MRI), 74.90 % (PET), 80.11 % (MP), and 78.77 % (MPC), while D-

S2MTL/DW-SMTL achieved the ACCs of 68.85/68.89 % (MRI), 68.89/64.31 % (PET), and 

70.98/70.94 % (MP), and 68.98/72.77 % (MPC). In the meantime, SMTL/S2MTL achieved 

the ACCs of 70.90/70.32 % (MRI), 64.98/67.90 % (PET), 66.76/69.65 % (MP), and 

68.32/67.02 % (MPC), respectively. By applying the proposed deep and feature-adaptive 

weighting scheme, DW-SMTL improved the ACCs by 4.18 % (MP) and 4.45 % (MPC) 

compared to SMTL. It is remarkable that compared to S2MTL, DW-S2MTL improved by 

7.25 % (MRI), 7.30 % (PET), 10.46 % (MP), and 11.75 % (MPC).

Lastly, in the classification of pMCI and sMCI (Table 5), which is clinically the most 

important because the timely symptomatic treatment can potentially delay the progression 

(Francis et al. 2010), DW-S2MTL outperformed the other competing methods again, and the 

proposed deep and feature-adaptive weighting scheme helped improve the accuracies for 

both SMTL and S2MTL. Concretely, we obtained the ACCs of 69.84 % (MRI), 65.71 % 

(PET), 74.15 % (MP), and 73.04 % (MPC) by DW-S2MTL and the ACCs of 63.71/55.46 % 

(MRI), 55.25/54.12 % (PET), 67.82/56.71 % (MP), 70.73/58.56 % (MPC) by D-

S2MTL/DW-SMTL. In comparison between S2MTL and DW-S2MTL, the improvements 

were 8.84 % (MRI), 7.84 % (PET), 8.82 % (MP), and 6 % (MPC). It is also noteworthy that 

the subclass-based methods, i.e., S2MTL and DW-S2MTL, that encompass the 
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characteristics of a complex distribution were superior to both SMTL and DW-SMTL that 

assumed a unimodal data distribution.

Multi-class classification results

From a clinical standpoint, while there exist multiple stages in the spectrum of AD and CN, 

the previous work mostly focused on binary classification problems. By taking account of 

more practical applications, we also performed experiments of multi-class classifications. 

Note that no change in our framework is required for multi-class classification, except for 

the class labels.

Figure 3 summarizes the performances on two multi-class classification tasks. Same as the 

binary classification results, we observed that the proposed DW-S2MTL method 

outperformed the competing methods for both three-class and four-class classification tasks. 

Concretely, in three-class classification, SMTL achieved the ACCs of 50.10 % (MRI), 

49.52 % (PET), 54.57 % (MP), and 58.55 % (MPC), and DW-SMTL achieved the ACCs of 

50.10 % (MRI), 51.50 % (PET), 56.52 % (MP), and 58.55 % (MPC). Meanwhile, DW-

S2MTL achieved 55.50 % (MRI), 53.50 % (PET), 62.43 % (MP), and 62.93 % (MPC). In 

four-class classification, the maximal ACC of 53.72 % was produced by the proposed DW-

S2MTL method with MPC data, improving the ACC by 9.08 % (vs. SMTL), 8.63 % (vs. 

DW-SMTL), 11.22 % (vs. S2MTL), and 12.21 % (vs. D-S2MTL), respectively.

Classification results on a large MRI dataset

Since the focus on AD/MCI diagnosis or prognosis appears to be mostly on MRI, we further 

performed experiments with a large number of MRI data. Specifically, we considered 805 

subjects of 198 (AD), 167 (pMCI), 236 (sMCI), and 229 (NC). With this large dataset, we 

conducted experiments for the same tasks as considered above. The classification accuracies 

and the respective standard deviations are presented in Fig. 4. In all classification tasks, the 

proposed DW-S2MTL clearly surpassed the other four competing methods, by achieving the 

ACCs of 90.27 % (AD vs. NC), 70.86 % (MCI vs. NC), 73.93 % (pMCI vs. sMCI), 57.74 % 

(AD vs. MCI vs. NC), and 47.83 % (AD vs. pMCI vs. sMCI vs. NC), respectively.

Discussions

Based on our experiments of binary and multi-class classifications, we observed two 

interesting results: (1) when comparing SMTL with S2MTL and also DW-SMTL with DW-

S2MTL, the subclass-based approaches, i.e., S2MTL and DW-S2MTL, outperformed the 

respective competing methods, i.e., SMTL and DW-SMTL; (2) the proposed deep sparse 

multi-task learning method with a feature-adaptive weighting scheme helped enhance the 

diagnostic accuracies, i.e., DW-SMTL and DW-S2MTL showed better performance than 

SMTL, and S2MTL and D-S2MTL, respectively. In this section, we further discuss the 

results in various perspectives.

Data distributions

In our experiments, the subclass-based methods, i.e., S2MTL and DW-S2MTL, were 

superior to the respective competing methods, i.e., SMTL and DW-SMTL. To justify the 
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results, we performed Henze–Zirkler’s multivariate normality test (Henze and Zirkler 1990) 

that statistically determines how well samples can be modeled by a multivariate normal 

distribution, and summarized the results in Table 6. In our test, the null hypothesis was that 

the samples could come from a multivariate normal distribution. Regarding MRI, the null 

hypothesis was rejected for both AD and MCI. With respect to PET, the test rejected the 

hypothesis for MCI. In the meantime, it turned out that the CSF samples of all the disease 

labels did not follow a multivariate Gaussian distribution. Based on these statistical 

evaluations, we can confirm the complex data distributions and also justify the necessity of 

using the subclass-based approach, which can efficiently handle such a complex distribution 

problem.

Effect of deep architecture in feature selection

To see the effect of the proposed deep learning scheme in a sparse regression framework, in 

Fig. 5a and b, respectively, we illustrate the change of the weights for each feature and the 

selected features over hierarchies by DW-S2MTL from one of the tenfolds in three-class 

classification with MP data. From the figure, it is clear that in the 1st hierarchy that 

corresponds to S2MTL, the weights for the features are equal and more than 80 % of the 

total features were selected. But, as the algorithm forwarded to the higher hierarchy, it 

gradually discarded uninformative or less informative features, whose weights from the 

optimal regression coefficients in the lower hierarchy were relatively low, and after the 4-th 

hierarchy, it finally selected only 19 features (approximately 10 % of the total features). The 

ROIs corresponding to the finally selected features, i.e., weighted high for classification, 

included hippocampal formation left/right, amygdala left/right (in a medial temporal lobe 

that involves a system of anatomically related structures that are vital for declarative or long-

term memory) (Braak and Braak 1991; Visser et al. 2002; Mosconi 2005; Lee et al. 2006; 

Devanand et al. 2007; Frisoni et al. 2008; Burton et al. 2009; Desikan et al. 2009; Ewers et 

al. 2012; Walhovd et al. 2010), precuneus left/right (Karas et al. 2007), cuneus left (Bokde et 

al. 2006; Singh et al. 2006; Davatzikos et al. 2011), uncus left, anterior cingulate gyrus left, 

occipital pole left, subthalamic nucleus left, postcentral gyrus left/right, superior parietal 

lobule right, anterior limb of internal capsule right, and angular gyrus left (Schroeter et al. 

2009; Nobili et al. 2010; Yao et al. 2012). From a biological perspective, we could 

understand that some of the ROIs such as hippocampal formation, amygdala, and 

precuneous selected from our MRI features were related to the volume atrophy in medial 

temporal cortex, while precuneous, cingulate gyrus, and parietal lobule selected from our 

PET features could be concerned with hypometabolism (Joie et al. 2012). For reference, we 

also summarized the statistics of the number of hierarchies built with the proposed DW-

S2MTL in the tasks of binary and multi-class classification with different modalities in Table 

7.

Performance interpretation

In “Binary classification results” and “Multi-class classification results”, we showed the 

superiority of the proposed DW-S2MTL method compared to the competing methods in the 

context of classification accuracy. For the binary classifications of MCI vs. CN and pMCI 

vs. sMCI, the proposed DW-S2MTL method with MP data showed better performance than 

with MPC data, even though the later provided additional information from CSF. Note that 
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in this work, we treated different modalities equally, i.e., uniform weight across modalities. 

However, should we apply a modality-adaptive weighting scheme similar to Zhang et al. 

(2011), we then expect to obtain enhanced performances with MPC data.

Regarding sensitivity and specificity, the higher the sensitivity, the lower the chance of 

misdiagnosing AD/MCI patients; also the higher the specificity, the lower the chance of 

misdiagnosing CN to AD/MCI. In our three binary classification tasks, although the 

proposed DW-S2MTL method achieved the best accuracies, it did not necessarily obtain the 

best sensitivity or specificity (but still reported high sensitivity and specificity). It is 

noteworthy that due to the imbalanced samples between classes, we obtained low sensitivity 

in pMCI vs. sMCI and low specificity in MCI vs. CN. In this regard, we also computed the 

balanced accuracy that avoids inflated performance estimates on imbalanced datasets by 

taking the average of sensitivity and specificity. Based on this metric, we clearly see that the 

proposed DW-S2MTL method outperformed the competing methods by achieving the 

maximal BACs of 95 % (MPC) in AD vs. CN, 73.78 % (MP) in MCI vs. CN, and 71.58 % 

(MP) in pMCI vs. sMCI.

The metrics of sensitivity and specificity have been widely considered in the fields of the 

computer-aided AD diagnosis. However, note that since both sensitivity and specificity are 

defined on the basis of people with or without a disease, there is no practical use to estimate 

the probability of disease in an individual patient (Akobeng 2007). We rather need to know 

the positive/negative predictive values (PPV/NPV for short), which describe a patient’s 

probability of having disease once the classification results are known. Furthermore, PPV 

and NPV are highly related to the prevalence of disease. That is, the higher the disease 

prevalence, the higher the PPV, i.e., the more likely a positive diagnostic result; the lower 

disease prevalence, the lower the PPV, i.e., the less likely a positive diagnostic result. NPV 

would show exactly the opposite trends. In our experiments, the proposed DW-S2MTL 

method achieved the maximal PPVs/NPVs of 97.74 % (MPC)/92.86 % (MPC) in AD vs. 

CN, 79.64 % (MPC)/82.07 % (MP) in MCI vs. CN, and 84.36 % (MP)/70.51 % (MP) in 

pMCI vs. sMCI. It is remarkable that in pMCI vs. sMCI classification, which is clinically 

the most important, the proposed DW-S2MTL showed PPV improvements by 28.4 % (vs. 

SMTL with MPC), 30.58 % (vs. DW-SMTL with MPC), 22.88 % (vs. S2MTL with MPC), 

and 1.63 % (vs. D-S2MTL) and NPV improvements by 7.71 % (vs. SMTL with MPC), 

9.94 % (vs. DW-SMTL with MP), 0.62 % (vs. S2MTL with MPC), and 3.29 % (vs. D-

S2MTL with MPC).

Comparison with the state-of-the-art methods

In Table 8, we also compared the classification accuracies of the proposed DW-S2MTL 

method with those of the state-of-the-art methods that fused multiple modalities for the 

classifications of AD vs. NC and MCI vs. NC. Note that, due to different datasets and 

different approaches for extracting features and building classifiers, it is not fair to directly 

compare the performances among the methods. Nevertheless, the proposed method showed 

the highest accuracies among the methods in both binary classification problems. In 

particular, it is noteworthy that compared to Zhang and Shen’s work (2011) in which they 

used the same dataset as ours, the proposed method enhanced the accuracies by 1.89 and 
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3.71 % for the classifications of AD/CN and MCI/CN, respectively. Furthermore, in 

comparison with Liu et al.’s work (2013), where they also used both the same types of 

features from MRI and PET and the same number of subjects with ours, our method 

improved the accuracies by 0.72 % (AD/CN) and 1.31 % (MCI/CN), respectively. We also 

performed statistical significance tests to compare with Liu et al.’s and Zhang et al.’s 

methods. In summary, the null hypothesis was rejected beyond the 99 % of the confidence 

level based on the p-values of 0.00024 (vs. Liu et al.’s method) and 0.00012 (vs. Zhang et 

al.’s method).

Conclusions

In neuroimaging-based AD/MCI diagnosis, the ‘high-dimension and small sample’ problem 

has been one of the major issues. To tackle this problem, sparse regression methods have 

been widely exploited for feature selection, thus reducing the dimensionality. To our best 

knowledge, most of the existing methods select informative features in a single hierarchy. 

However, during the optimization of the regression coefficients, the weights of informative 

features are inevitably affected by non-informative or noisy features, and thus there is a high 

possibility of having the informative features underestimated or the uninformative features 

overestimated. In this regard, we proposed a deep sparse multi-task learning method along 

with a feature-adaptive weighting scheme for feature selection in AD/MCI diagnosis. The 

main contributions of this work can be threefold: (1) Rather than selecting informative 

features in a single hierarchy, the proposed method iteratively filters out uninformative 

features in a hierarchical fashion. (2) Furthermore, at different hierarchies, our method 

utilizes the regression coefficients optimized in the lower hierarchy as context information to 

better determine informative features for classification. (3) Last but not least, our method 

reflects the complex distributional characteristics in each class via a subclass labeling 

scheme.

In our experimental results on the ADNI cohort, we validated the effectiveness of the 

proposed method in both binary classification and multi-class classification tasks, 

outperforming the competing methods in various metrics.

It is noteworthy that in this work, we regarded the importance of features from different 

modality equally. However, as demonstrated by Zhang et al. (2011), different modalities may 

have different impacts on making a clinical decision. If a multi-kernel SVM (Gönen and 

Alpaydin 2011) is used to replace the linear SVM in our framework, then it would be 

possible to learn modality-adaptive weights and thus can obtain the relative importance of 

different modalities.

According to a recent broad spectrum of studies, there are increasing evidences that 

subjective cognitive complaint is one of the important genetic risk factors, which increases 

the risk of progression to MCI or AD (Loewenstein et al. 2012; Mark and Sitskoorn 2013). 

That is, among the cognitively normal elderly individuals who have subjective cognitive 

impairment, there exists a high possibility for some of them to be in the stage of ‘pre-MCI’. 

However, this issue has been underestimated in the field. Thus, we believe that it is 

important to design and develop diagnostic methods by taking into account such information 
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as well. In addition, to our best knowledge, most of the existing computational methods have 

focused on improving diagnostic accuracy or finding the potential biomarkers. However, for 

practical application of those computational tools as an expert system, it is required to 

present the grounds for the clinical decision. For example, when a diagnostic system makes 

a decision to MCI, then it would be beneficial for doctors to know which parts of the brain 

regions are distinct or abnormal compared to those of the normal healthy controls.
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Appendix Appendix: Affinity propagation

Here, we briefly review the affinity propagation (Frey and Dueck 2007), by which we find 

subclasses in each original class. Let  denote the pairwise 

similarities13 between each pair of N samples in . The affinity propagation algorithm 

works on the similarity matrix  and attempts to find ‘exemplars’ that 

maximize the overall sum of similarities between all exemplars and their member samples. 

Methodologically, the algorithm defines two types of messages, namely, responsibility and 

availability, exchanged among samples: Responsibility  represents the accumulated 

evidence for how well-suited sample j is to serve as the exemplar for sample i; Availability 

 reflects the accumulated evidence for how appropriate it would be for sample i to 

choose sample j as its exemplar. Using these messages, the exemplar of sample i is 

determined by the one that maximizes the following objective function:

(8)

In Algorithm 1, both  and  are initially set to zero matrices, and 

then their values are iteratively updated as below until converged:

13In this work, we use a negative Euclidian distance for similarity computation.
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Fig. 1. 
A framework for AD/MCI diagnosis with the proposed deep weighted subclass-based sparse 

multi-task learning (DW-S2MTL) method
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Fig. 2. 
Schematic illustration of the proposed deep weighted subclass-based sparse multi-task 

learning for feature selection. 

 denotes an objective 

function in Eq. (7), δ(h) is defined by Eq. (6), and a(h) (a(0) = 0) and  denote, respectively, 

the validation accuracy and a set of the selected features at the h-th hierarchy
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Fig. 3. 
Performance comparison on two multi-class classification problems. (AVG average of 

accuracies over different modalities, SMTL sparse multi-task learning, S 2MTL subclass-

based SMTL, DW-SMTL deep weighted SMTL, D-S 2MTL deep S2MTL, DW-S 2MTL 
deep weighted S2MTL)
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Fig. 4. 
Performance comparison on a large MRI dataset from ADNI. (SMTL sparse multi-task 

learning, S 2MTL subclass-based SMTL, DW-SMTL deep weighted SMTL, D-S 2MTL 
deep S2MTL, DW-S 2MTL deep weighted S2MTL)
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Fig. 5. 
An example of the change of the selected features over hierarchies with MP in AD vs. MCI 

vs. CN
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Table 1

Demographic and clinical information of the subjects

AD (N = 51) Progressive MCI (N = 43) Stable MCI (N = 56) CN (N = 52)

Female/male 18/33 15/28 17/39 18/34

Age (mean ± SD) 75.2 ± 7.4 [59–88] 75.7 ± 6.9 [58–88] 75.0 ± 7.1 [55–89] 75.3 ± 5.2 [62–85]

Education (mean ± SD) 14.7 ± 3.6 [4–20] 15.4 ± 2.7 [10–20] 14.9 ± 3.3 [8–20] 15.8 ± 3.2 [8–20]

MMSE (mean ± SD) 23.8 ± 2.0 [20–26] 26.9 ± 2.7 [20–30] 27.0 ± 3.2 [18–30] 29 ± 1.2 [25–30]

CDR (mean ± SD) 0.7 ± 0.3 [0.5–1] 0.5 ± 0 [0.5–0.5] 0.5 ± 0 [0.5–0.5] 0 ± 0 [0–0]

MMSE mini-mental state examination, CDR clinical dementia rating, N number of subjects, SD standard deviation [min–max]
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Table 2

Characteristics of the competing methods considered in our experiments

SMTL S2MTL DW-SMTL D-S2MTL DW-S2MTL

Distribution Unimodal Complex Unimodal Complex Complex

Hierarchy Single Single Multiple Multiple Multiple

Use of context information No No Yes No Yes

SMTL sparse multi-task learning, S2 MTL subclass-based SMTL, DW-SMTL deep weighted SMTL, D-S2MTL deep S2MTL, DW-S2MTL deep 

weighted S2MTL
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Table 3

A summary of the performances for AD vs. CN classification

Method Modality ACC (%) SEN (%) SPEC (%) BAC (%) PPV (%) NPV (%)

SMTL MRI 86.55 ± 3.02 88.33 84.33 86.33 87.55 85.28

PET 80.45 ± 3.26 80.33 80.67 80.50 88.49 69.11

MP 87.64 ± 3.31 90.33 85.00 87.67 85.53 89.96

MPC 92.45 ± 2.69 94.00 90.67 92.33 92.04 92.94

DW-SMTL MRI 88.36 ± 3.20 84.33 92.33 88.33 91.55 85.68

PET 82.45 ± 3.22 82.33 82.67 82.50 89.70 71.85

MP 90.45 ± 3.13 90.33 90.33 90.33 94.67 83.65

MPC 92.45 ± 2.69 94.00 90.67 92.33 92.05 92.94

S2MTL MRI 86.55 ± 3.02 78.33 94.33 86.33 92.90 82.14

PET 85.36 ± 3.29 84.00 86.67 85.33 85.86 84.90

MP 93.18 ± 2.52 90.00 96.33 93.17 96.05 90.68

MPC 92.36 ± 2.70 94.00 90.33 92.17 92.33 92.40

D-S2MTL MRI 83.64 ± 3.70 84.33 83.00 83.67 89.78 74.48

PET 89.36 ± 2.68 90.00 88.67 89.33 89.54 89.16

MP 88.27 ± 2.78 82.00 94.33 88.17 93.32 84.43

MPC 90.36 ± 2.77 90.00 90.33 90.17 89.25 91.33

DW-S2MTL MRI 90.36 ± 2.53 82.33 98.33 90.33 98.00 84.86

PET 89.27 ± 2.97 82.33 96.33 89.33 95.80 84.27

MP 93.18 ± 2.82 90.00 96.33 93.17 96.05 90.68

MPC 95.09 ± 2.28 92.00 98.00 95.00 97.74 92.86

Boldface denotes the best performance and the maximum performance in each metric

SMTL sparse multi-task learning, S2 MTL subclass-based SMTL, DW-SMTL deep weighted SMTL, D-S2MTL deep S2MTL, DW-S2MTL deep 

weighted S2MTL
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Table 4

A summary of the performances for MCI vs. CN classification

Method Modality ACC (%) SEN (%) SPEC (%) BAC (%) PPV (%) NPV (%)

SMTL MRI 70.90 ± 3.04 80.78 52.00 66.39 76.30 58.58

PET 64.98 ± 2.68 75.89 44.00 59.94 72.27 48.69

MP 66.76 ± 3.29 73.56 53.67 63.61 75.35 51.33

MPC 68.32 ± 3.48 74.89 56.00 65.44 76.14 54.32

DW-SMTL MRI 68.89 ± 2.85 76.67 54.00 65.33 76.13 54.74

PET 64.31 ± 2.82 73.89 46.00 59.94 72.34 47.96

MP 70.94 ± 3.04 80.89 52.00 66.44 76.23 58.84

MPC 72.77 ± 3.40 79.78 59.33 69.56 79.00 60.48

S2MTL MRI 70.32 ± 3.18 82.78 46.67 64.72 74.66 58.81

PET 67.60 ± 3.22 78.89 46.33 62.61 73.47 53.81

MP 69.65 ± 2.56 76.78 56.33 66.56 76.66 56.49

MPC 67.02 ± 2.95 78.78 44.67 61.72 73.07 52.55

D-S2MTL MRI 68.85 ± 3.15 76.56 54.33 65.44 75.94 55.17

PET 68.89 ± 2.96 76.89 54.00 65.44 75.68 55.66

MP 70.98 ± 2.91 77.78 58.33 68.06 77.64 58.53

MPC 68.98 ± 3.30 76.78 54.33 65.56 75.95 55.47

DW-S2MTL MRI 77.57 ± 2.92 90.89 52.00 71.44 78.42 74.83

PET 74.90 ± 2.55 96.00 34.67 65.33 73.69 81.97

MP 80.11 ± 2.64 93.89 53.67 73.78 79.54 82.07

MPC 78.77 ± 2.47 90.78 56.00 73.39 79.64 76.21

Boldface denotes the best performance and the maximum performance in each metric

SMTL sparse multi-task learning, S 2MTL subclass-based SMTL, DW-SMTL deep weighted SMTL, D-S 2MTL deep S2MTL, DW-S 2MTL deep 

weighted S2MTL
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Table 5

A summary of the performances for pMCI vs. sMCI classification

Method Modality ACC (%) SEN (%) SPEC (%) BAC (%) PPV (%) NPV (%)

SMTL MRI 51.44 ± 3.68 39.50 61.00 50.25 44.78 55.74

PET 50.92 ± 3.97 40.50 59.33 49.92 44.56 55.27

MP 54.48 ± 3.88 41.50 65.00 53.25 49.01 57.82

MPC 60.69 ± 4.06 46.50 72.00 59.25 56.96 62.80

DW-SMTL MRI 55.46 ± 3.65 29.00 76.33 52.67 49.14 57.68

PET 54.12 ± 4.28 38.00 66.33 52.17 46.09 58.55

MP 56.71 ± 4.28 44.00 67.00 55.50 51.91 59.64

MPC 58.56 ± 4.09 36.50 75.67 56.08 53.78 60.57

S2MTL MRI 61.00 ± 3.47 53.00 66.33 59.67 51.19 67.93

PET 57.87 ± 4.13 44.50 68.33 56.42 52.36 61.15

MP 65.33 ± 3.84 59.50 70.67 65.08 65.01 65.58

MPC 67.04 ± 4.38 67.00 66.67 66.83 61.48 69.89

D-S2MTL MRI 63.71 ± 2.43 25.50 92.00 58.75 70.24 62.52

PET 55.25 ± 4.60 50.00 59.67 54.83 51.07 58.64

MP 67.82 ± 3.41 37.00 93.33 65.17 82.12 64.16

MPC 70.73 ± 3.41 42.50 93.00 67.75 82.73 67.22

DW-S2MTL MRI 69.84 ± 2.68 44.00 89.00 66.50 74.79 68.19

PET 65.71 ± 3.64 29.50 95.00 62.25 82.68 62.49

MP 74.15 ± 3.35 50.50 92.67 71.58 84.36 70.51

MPC 73.04 ± 3.51 53.00 89.00 71.00 79.33 70.39

Boldface denotes the best performance and the maximum performance in each metric

SMTL sparse multi-task learning, S 2MTL subclass-based SMTL, DW-SMTL deep weighted SMTL, D-S 2MTL deep S2MTL, DW-S 2MTL deep 

weighted S2MTL

Brain Struct Funct. Author manuscript; available in PMC 2016 June 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Suk et al. Page 34

Table 6

A summary of Henze–Zirkler’s multivariate normality test on our dataset

Modality AD MCI NC

MRI 0.0005 (R) 0.0004 (R) 0.6967 (A)

PET 0.4273 (A) 0.0239 (R) 0.3150 (A)

CSF 0.0049 (R) <0.0001 (R) <0.0001 (R)

‘R’ or ‘A’ in parentheses denotes whether the null hypothesis (that the samples could come from a multivariate normal distribution) is rejected or 
accepted at the 5 % significance level
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Table 7

A summary of the statistics (mean ± std [min–max]) of the number of hierarchies with the proposed DW-

S2MTL in the tasks of binary and multi-class classification with modalities

Task MRI PET MP MPC

AD/CN 1.1 ± 0.3 [1–2] 1.4 ± 0.7 [1–3] 1.5 ± 0.7 [1–3] 1.6 ± 1.0 [1–4]

MCI/CN 1.5 ± 0.8 [1–3] 1.8 ± 0.8 [1–3] 1.4 ± 0.5 [1–2] 2.0 ± 1.1 [1–4]

pMCI/sMCI 1.1 ± 0.3 [1–2] 1.2 ± 0.4 [1–2] 1.3 ± 0.5 [1–2] 1.4 ± 0.7 [1–3]

AD/MCI/CN 1.4 ± 0.5 [1–2] 1.7 ± 0.8 [1–3] 1.6 ± 1.0 [1–4] 1.5 ± 0.7 [1–3]

AD/pMCI/sMCI/CN 1.4 ± 1.0 [1–4] 1.8 ± 0.8 [1–3] 1.4 ± 0.8 [1–3] 1.5 ± 0.5 [1–2]
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Table 8

Comparison of classification accuracies (%) with the state-of-the-art methods that used multimodal 

neuroimaging for AD/CN and MCI/CN. The boldface denotes the maximum performance in each 

classification problem. (MP: MRI+PET, MPC: MRI+PET+CSF)

Methods Subjects (AD/MCI/NC) Modalities AD/CN MCI/CN

Kohannim et al. (2010) 40/83/43 MPC 90.7 75.8

Hinrichs et al. (2011) 48/119/66 MP 92.4 n/a

Zhang et al. (2011) 51/99/52 MPC 93.2 76.4

Liu et al. (2013) 51/99/52 MP 94.37 78.80

Proposed DW-S2MTL 51/99/52 MPC 95.09 80.11
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