4,460 research outputs found

    Neural Networks for Complex Data

    Full text link
    Artificial neural networks are simple and efficient machine learning tools. Defined originally in the traditional setting of simple vector data, neural network models have evolved to address more and more difficulties of complex real world problems, ranging from time evolving data to sophisticated data structures such as graphs and functions. This paper summarizes advances on those themes from the last decade, with a focus on results obtained by members of the SAMM team of Universit\'e Paris

    Bio-Inspired Multi-Layer Spiking Neural Network Extracts Discriminative Features from Speech Signals

    Full text link
    Spiking neural networks (SNNs) enable power-efficient implementations due to their sparse, spike-based coding scheme. This paper develops a bio-inspired SNN that uses unsupervised learning to extract discriminative features from speech signals, which can subsequently be used in a classifier. The architecture consists of a spiking convolutional/pooling layer followed by a fully connected spiking layer for feature discovery. The convolutional layer of leaky, integrate-and-fire (LIF) neurons represents primary acoustic features. The fully connected layer is equipped with a probabilistic spike-timing-dependent plasticity learning rule. This layer represents the discriminative features through probabilistic, LIF neurons. To assess the discriminative power of the learned features, they are used in a hidden Markov model (HMM) for spoken digit recognition. The experimental results show performance above 96% that compares favorably with popular statistical feature extraction methods. Our results provide a novel demonstration of unsupervised feature acquisition in an SNN

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin

    An adaptive training-less framework for anomaly detection in crowd scenes

    Get PDF
    Anomaly detection in crowd videos has become a popular area of research for the computer vision community. Several existing methods have determined anomaly as a deviation from scene normalcy learned via separate training with/without labeled information. However, owing to rare and sparse nature of anomalous events, any such learning can be misleading as there exist no hardcore segregation between anomalous and non-anomalous events. To address such challenge, we propose an adaptive training-less system capable of detecting anomaly on-the-fly. Our solution pipeline consists of three major components, namely, adaptive 3D-DCT model for multi-object detection-based association, local motion descriptor generation through an improved saliency guided optical flow, and anomaly detection based on Earth mover's distance (EMD). The proposed model, despite being training-free, is found to achieve comparable performance with several state-of-the-art methods on publicly available UCSD, UMN, CUHK-Avenue and ShanghaiTech datasets.</p

    Evolving spiking neural networks for temporal pattern recognition in the presence of noise

    Get PDF
    Creative Commons - Attribution-NonCommercial-NoDerivs 3.0 United StatesNervous systems of biological organisms use temporal patterns of spikes to encode sensory input, but the mechanisms that underlie the recognition of such patterns are unclear. In the present work, we explore how networks of spiking neurons can be evolved to recognize temporal input patterns without being able to adjust signal conduction delays. We evolve the networks with GReaNs, an artificial life platform that encodes the topology of the network (and the weights of connections) in a fashion inspired by the encoding of gene regulatory networks in biological genomes. The number of computational nodes or connections is not limited in GReaNs, but here we limit the size of the networks to analyze the functioning of the networks and the effect of network size on the evolvability of robustness to noise. Our results show that even very small networks of spiking neurons can perform temporal pattern recognition in the presence of input noiseFinal Published versio

    DAMNED: A Distributed and Multithreaded Neural Event-Driven simulation framework

    Full text link
    In a Spiking Neural Networks (SNN), spike emissions are sparsely and irregularly distributed both in time and in the network architecture. Since a current feature of SNNs is a low average activity, efficient implementations of SNNs are usually based on an Event-Driven Simulation (EDS). On the other hand, simulations of large scale neural networks can take advantage of distributing the neurons on a set of processors (either workstation cluster or parallel computer). This article presents DAMNED, a large scale SNN simulation framework able to gather the benefits of EDS and parallel computing. Two levels of parallelism are combined: Distributed mapping of the neural topology, at the network level, and local multithreaded allocation of resources for simultaneous processing of events, at the neuron level. Based on the causality of events, a distributed solution is proposed for solving the complex problem of scheduling without synchronization barrier.Comment: 6 page

    Morphological Network: How Far Can We Go with Morphological Neurons?

    Full text link
    In recent years, the idea of using morphological operations as networks has received much attention. Mathematical morphology provides very efficient and useful image processing and image analysis tools based on basic operators like dilation and erosion, defined in terms of kernels. Many other morphological operations are built up using the dilation and erosion operations. Although the learning of structuring elements such as dilation or erosion using the backpropagation algorithm is not new, the order and the way these morphological operations are used is not standard. In this paper, we have theoretically analyzed the use of morphological operations for processing 1D feature vectors and shown that this gets extended to the 2D case in a simple manner. Our theoretical results show that a morphological block represents a sum of hinge functions. Hinge functions are used in many places for classification and regression tasks (Breiman (1993)). We have also proved a universal approximation theorem -- a stack of two morphological blocks can approximate any continuous function over arbitrary compact sets. To experimentally validate the efficacy of this network in real-life applications, we have evaluated its performance on satellite image classification datasets since morphological operations are very sensitive to geometrical shapes and structures. We have also shown results on a few tasks like segmentation of blood vessels from fundus images, segmentation of lungs from chest x-ray and image dehazing. The results are encouraging and further establishes the potential of morphological networks.Comment: 35 pages, 19 figures, 7 table
    • …
    corecore