71 research outputs found

    Neurocomputational Model of EEG Complexity during Mind Wandering

    Get PDF
    Mind wandering (MW) can be understood as a transient state in which attention drifts from an external task to internal self-generated thoughts. MW has been associated with the activation of the Default Mode Network (DMN). In addition, it has been shown that the activity of the DMN is anti-correlated with activation in brain networks related to the processing of external events (e.g., Salience network, SN). In this study, we present a mean field model based on weakly coupled Kuramoto oscillators. We simulated the oscillatory activity of the entire brain and explored the role of the interaction between the nodes from the DMN and SN in MW states. External stimulation was added to the network model in two opposite conditions. Stimuli could be presented when oscillators in the SN showed more internal coherence (synchrony) than in the DMN, or, on the contrary, when the coherence in the SN was lower than in the DMN. The resulting phases of the oscillators were analyzed and used to simulate EEG signals. Our results showed that the structural complexity from both simulated and real data was higher when the model was stimulated during periods in which DMN was more coherent than the SN. Overall, our results provided a plausible mechanistic explanation to MW as a state in which high coherence in the DMN partially suppresses the capacity of the system to process external stimuli

    Can biological quantum networks solve NP-hard problems?

    Full text link
    There is a widespread view that the human brain is so complex that it cannot be efficiently simulated by universal Turing machines. During the last decades the question has therefore been raised whether we need to consider quantum effects to explain the imagined cognitive power of a conscious mind. This paper presents a personal view of several fields of philosophy and computational neurobiology in an attempt to suggest a realistic picture of how the brain might work as a basis for perception, consciousness and cognition. The purpose is to be able to identify and evaluate instances where quantum effects might play a significant role in cognitive processes. Not surprisingly, the conclusion is that quantum-enhanced cognition and intelligence are very unlikely to be found in biological brains. Quantum effects may certainly influence the functionality of various components and signalling pathways at the molecular level in the brain network, like ion ports, synapses, sensors, and enzymes. This might evidently influence the functionality of some nodes and perhaps even the overall intelligence of the brain network, but hardly give it any dramatically enhanced functionality. So, the conclusion is that biological quantum networks can only approximately solve small instances of NP-hard problems. On the other hand, artificial intelligence and machine learning implemented in complex dynamical systems based on genuine quantum networks can certainly be expected to show enhanced performance and quantum advantage compared with classical networks. Nevertheless, even quantum networks can only be expected to efficiently solve NP-hard problems approximately. In the end it is a question of precision - Nature is approximate.Comment: 38 page

    Spatiotemporal complexity patterns of resting‐state bioelectrical activity explain fluid intelligence : sex matters

    Get PDF
    Neural complexity is thought to be associated with efficient information processing but the exact nature of this relation remains unclear. Here, the relationship of fluid intelligence (gf) with the resting‐state EEG (rsEEG) complexity over different timescales and different electrodes was investigated. A 6‐min rsEEG blocks of eyes open were analyzed. The results of 119 subjects (57 men, mean age = 22.85 ± 2.84 years) were examined using multivariate multiscale sample entropy (mMSE) that quantifies changes in information richness of rsEEG in multiple data channels at fine and coarse timescales. gf factor was extracted from six intelligence tests. Partial least square regression analysis revealed that mainly predictors of the rsEEG complexity at coarse timescales in the frontoparietal network (FPN) and the temporo‐parietal complexities at fine timescales were relevant to higher gf. Sex differently affected the relationship between fluid intelligence and EEG complexity at rest. In men, gf was mainly positively related to the complexity at coarse timescales in the FPN. Furthermore, at fine and coarse timescales positive relations in the parietal region were revealed. In women, positive relations with gf were mostly observed for the overall and the coarse complexity in the FPN, whereas negative associations with gf were found for the complexity at fine timescales in the parietal and centro‐temporal region. These outcomes indicate that two separate time pathways (corresponding to fine and coarse timescales) used to characterize rsEEG complexity (expressed by mMSE features) are beneficial for effective information processing

    Towards a computational phenomenology of mental action: modelling meta-awareness and attentional control with deep parametric active inference

    Get PDF
    Meta-awareness refers to the capacity to explicitly notice the current content of consciousness and has been identified as a key component for the successful control of cognitive states, such as the deliberate direction of attention. This paper proposes a formal model of meta-awareness and attentional control using hierarchical active inference. To do so, we cast mental action as policy selection over higher-level cognitive states and add a further hierarchical level to model meta-awareness states that modulate the expected confidence (precision) in the mapping between observations and hidden cognitive states. We simulate the example of mind-wandering and its regulation during a task involving sustained selective attention on a perceptual object. This provides a computational case study for an inferential architecture that is apt to enable the emergence of these central components of human phenomenology, namely, the ability to access and control cognitive states. We propose that this approach can be generalized to other cognitive states, and hence, this paper provides the first steps towards the development of a computational phenomenology of mental action and more broadly of our ability to monitor and control our own cognitive states. Future steps of this work will focus on fitting the model with qualitative, behavioural, and neural data

    Narratives of the self in bilingual speakers: the neurophenomenal space

    Get PDF
    We tell one another stories of our lives. Sharing subjective experience is part of what it means to be an embodied, languaging being. In order to explore this aspect of our nature we need to relate our phenomenal experience to its neural bases as we talk. I describe a three-step procedure to do so as a person recounts a personal story. The first step characterizes their subjective experience. I describe two complementary ways to do so. The second step infers the attentional and attributional processes that compose that experience. I suppose that telling a personal story is a form of reliving it. The process of mental simulation involved recruits other attributional processes and is itself nested under one that sustains attention to the goal of telling the story. The third step identifies these processes with their possible neural bases expressed through the language network. I take the mapping from the phenomenal to the neural to be the neurophenomenal space and offer a visualization of it. I illustrate the procedure using the hypothetical example of a bilingual speaker who tells of a recent experience walking in a new city

    Associative Transitions in Language Processing

    Get PDF

    On consciousness, resting state fMRI, and neurodynamics

    Get PDF
    corecore