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Abstract

Meta-awareness refers to the capacity to explicitly notice the current content of consciousness and has been identified as a key com-
ponent for the successful control of cognitive states, such as the deliberate direction of attention. This paper proposes a formal model
of meta-awareness and attentional control using hierarchical active inference. To do so, we cast mental action as policy selection over
higher-level cognitive states and add a further hierarchical level to model meta-awareness states that modulate the expected confi-
dence (precision) in the mapping between observations and hidden cognitive states. We simulate the example of mind-wandering and
its regulation during a task involving sustained selective attention on a perceptual object. This provides a computational case study for
an inferential architecture that is apt to enable the emergence of these central components of human phenomenology, namely, the
ability to access and control cognitive states. We propose that this approach can be generalized to other cognitive states, and hence,
this paper provides the first steps towards the development of a computational phenomenology of mental action and more broadly of
our ability to monitor and control our own cognitive states. Future steps of this work will focus on fitting the model with qualitative,
behavioural, and neural data.

Keywords: active inference; metacognition; opacity; transparency; free energy principle; focused attention; neurophenomenology;
mind-wandering; mindfulness

Introduction
Towards a scientific study of mental action
The control of cognitive states through mental action is a hall-
mark of human phenomenology. The underlying mechanisms,
effects, and (dys)functions of cognitive control are highly relevant
to cognitive, clinical, and theoretical neurosciences. The control
of attentional states, for instance, is thought to be at the heart
of several psychiatric conditions. Even beyond the obvious rel-
evance to attention-deficit disorders, recent work suggests that
attentional control plays an important role in the aetiology of
schizophrenia (Brown et al. 2013) and the associated phenomenon
of depersonalization disorder (Ciaunica et al. 2021), as well as in
depression (Rock et al. 2014) and across the autism spectrum (Van
de Cruys et al. 2014; Kiverstein et al. 2020). These involve spe-
cific and subtle dysfunctions that affect perception, thought, and

mood, which stem from the atypical inference about one’s higher-
order states and faulty control over the associated processes.
These are of higher order in that they govern the attribution of

confidence to one’s own perceptions (Palmer et al. 2017; Lysaker

et al. 2020).
We define meta-awareness in this context as the ability to

‘explicitly’ notice the current content of a conscious episode.

[The definition of meta-awareness is a topic of ongoing discus-

sion in metacognition and mindfulness research. For instance,

Dunne et al. (2019) recently argued that meta-awareness can be
non-propositional and continuous. This model has the capac-

ity to account for such nuances. For our purposes, as discussed
in the text, we define states of meta-awareness as those (third-

order) states of the system that are about, and enable the
opacity of, (second-order) attentional states. They thus function
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analogously to attentional states, which enable the opacity of,
(first-order) perceptual states. As such, this computational defi-
nition does not currently require a propositional self-reflection of
the form ‘I am paying attention to reading this text’.] A canonical
example of meta-awareness is to become aware of an episode
of mind-wandering (Schooler et al. 2011). Generally speaking, the
capacity of meta-awareness provides the agent knowledge about
the objects of experience and experience itself, which can be
used to increase control over mental processes or to revise beliefs.
Mental action, in turn, refers to goal-directed internal behaviour,
without necessarily having a direct consequence on the external
environment (e.g. as through muscular action). A paradigmatic
example of mental action is covert attention. Mental actions are
categorized by their phenomenology of ownership, goal direct-
edness, a subjective sense of effort, and the perceived sense of
agency and mental self-control (Metzinger and Wiese 2017).

The aims of this paper are 3-fold: (i) to explicitly model meta-
awareness, (ii) to account for the computational consequences of
meta-awareness on cognitive control, and (III) to provide a compu-
tational account of mental (covert) action. Formally speaking, the
crucial thing to note about these cognitive processes is that they
are ‘about’ other such processes. The deployment and control of
attentional states and processes, for instance, are quintessentially
a higher-level ability: such states and processesmonitor andmod-
ulate other, typically lower-level, perceptual states. Third-order,
higher-level processes, in turn, oversee these attentional pro-
cesses: we can be aware of our attention being grabbed and make
a deliberate decision to focus our attention elsewhere. It would
seem, then, that effective self-regulation of attention depends on
the ability to access, evaluate, and control the quality of these
attentional processes themselves—in the same way that atten-
tional processes are necessary to consciously access, assess, and
control lower-level perceptual states.

In computational terms, the central place of confidence and
reliability in effective self-regulation speaks to the key role of the
‘precision’ (or inverse variance) of implicit beliefs (i.e. probabilistic
or posterior Bayesian beliefs that describe a probability distri-
bution over some latent quantity; these beliefs are subpersonal;
however, the argument pursued in this work is that Bayesian
beliefs about Bayesian beliefs can, in certain situations, become
propositional) and the way they are estimated, optimized, and
controlled (Hesp et al. 2020, 2021). Precisions, in a nutshell, quan-
tify our confidence in our beliefs; say, how confident we are about
whatwe knowabout states of theworld, about their relation to our
sensory observations, or about how these states change over time.
By analogy with physical action, a ‘mental’ (or ‘covert’) action
consists in deploying and adjusting these key quantities, with-
out there necessarily being an explicit behavioural counterpart
to these covert actions (Limanowski and Friston 2018, 2020). The
nascent field of computational psychiatry is largely about deci-
phering these precision-related processes, shedding light on their
physiological implementation (Lecaignard et al. 2020) and estab-
lishing their causal link with specific clinical traits (Friston et al.
2017a).

Covert or mental actions, as just defined, also speak to other
fields of neuroscience. In some traditions, such as mindful-
ness meditation, an objective of training is to make cognitive
processes accessible and hence controllable. The field of med-
itation research, sometimes referred to as contemplative neu-
roscience, has grown rapidly since the early 2000s (Eberth and
Sedlmeier 2012; Sedlmeier et al. 2012; Tang et al. 2015; Fox et al.
2016). This literature has increased our understanding of the

relationship betweenmeta-awareness and cognitive control, espe-
cially with regard to attentional processes. Mechanistic mod-
els of these processes are beginning to appear (Farb et al. 2015;
Jamieson 2016; Manjaly and Iglesias 2020; Lutz et al. 2019; Pagnoni
2019; Laukkonen and Slagter 2021). Complementary to this work,
the contribution of this paper is a formal and computational
architecture of these processes derived from first (Bayesian or
variational) principles, which explicitly disambiguates the rela-
tionship between meta-awareness and attention.

Several conceptual frameworks exist in phenomenology, clin-
ical psychology, and cognitive sciences to describe this relation-
ship. For the purpose of this work, we focus on ‘regulatory’
cognitive control strategies, in which an agent seeks to control
their mental states by becoming aware of the state as a cognitive
process (as opposed to regulation strategies where one remains
engrossed in the contents of the state). This style of regulation is
central in mindfulness-related intervention, where patients learn
to change their relation to thoughts and emotions, rather than
change the thoughts and emotions themselves. As such, this
regulation accounts for the positive effect of mindfulness medita-
tion on mood disorders (Wetherell et al. 2017; Segal and Teasdale
2018). The ensuing meta-perspective on mental states has been
labelled as phenomenological reduction (Varela 1996), decenter-
ing (Bernstein et al. 2015), cognitive defusion (Fletcher and Hayes
2005), mindful attention (Papies et al. 2012), dereification (Lutz
et al. 2015), or opacification (Metzinger 2003). In contrast to this
stance, being self-immersed in the contents of one’s mind has
been called cognitive fusion (Fletcher and Hayes 2005), reification
(Lutz et al. 2015), absorption (Tellegen and Atkinson 1974), expe-
riential fusion (Dahl et al. 2015), subjective realism (Lebois et al.
2015), or transparency (Metzinger 2003).

To operationalize this aspect of meta-awareness, we will fol-
low the distinction found in the self-model theory of subjectivity
(Metzinger 2004), as it has already been used in previous treat-
ments that directly influence the present work (Limanowski and
Friston 2018), namely, the distinction between opacity and trans-
parency.

Target phenomenology: opacity and
transparency
The capacity of a system to access some subset of its own states
has been theorized under the rubric of ‘opacity’ versus ‘trans-
parency’ (Metzinger 2003). According to this framework, the men-
tal states of human beings can be broken down into two kinds:
those that are accessible to the system per se, which are labelled
as ‘opaque’ (in the sense of being perceptible), and those that
are not, which are labelled as ‘transparent’ (in the sense of being
imperceptible). Some mental processes function only to make
aspects of the world perceivable. We are not aware of them ‘as
such’, but rather, we are aware of the content that they make
available: these cognitive processes are ‘transparent’, like a glass
window that allows us to see what is outside. Other processes,
however, make these cognitive constructive processes accessible
per se. This second set of processes are about other states of the
mind, to which they provide access, as a new source of data now
made available for further processing. These processes are akin to
the scroll wheel on a pair of binoculars, which has a position state
that its user can control and which enables one to apprehend and
to control the precision of sensory inputs.

Transparent states and processes are thought to be by far
the more common kind, which we share with most other ani-
mals. They mediate the agent’s access to the latent causes of
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their sensory states, to things appearing ‘out there’ in the world.
The basic idea, then, is that we are not conscious of many of
our mental states (the transparent ones) ‘as being’ mental states,
i.e. grasping them explicitly as being the results of constructive
cognitive processes. Rather, such processes allow us to access
some content, which is not experienced as constructed or mental.
Accordingly, Metzinger argues that a state is transparent just in
case the processes that construct it or constitute it are ‘not avail-
able’ to the system through ‘introspective attention’ (Metzinger
2003). For example, the process of dreaming is a transparent state
until the dreamer becomes lucid, i.e. aware of the fact they are
dreaming, at which point the dreaming process becomes opaque
(i.e. perceptible as a process that can be controlled) (Konkoly et al.
2021).

Generalizing from the concept as it figures in the self-model
theory of subjectivity, we can say that some set of states and pro-
cesses is partially ‘opaque’ when the cognitive agent (i) usually
employs them transparently, to interact with things, events, and
places appearing subjectively real in the world or the mind but
(ii) is also able to represent these states to itself or ‘access’ them
as well, as data for further inference. They are fully ‘transpar-
ent’ when condition (ii) does not hold. Certain cognitive processes,
especially attentional ones, are related to the hallmark intentional
features of opacity, in that they render other states opaque. (Note
that these states themselves are not ‘necessarily’ opaque; as we
will see below, to make them accessible requires a further set
of processes.) Attentional states, for instance, are ‘about’ per-
ceptual states—they are second-order states, just as precisions
are second-order parameters pertaining to first-order parameters
(their mean values). In other words, they are about the results of
an inferential process (Parr and Friston 2017b). Or again, consider
emotional states and processes, which are about interoceptive
and exteroceptive states (Clark et al. 2018; Allen et al. 2019; Hesp
et al. 2021). In all these cases, the states and processes at play
in attention and emotion not only guide behaviour implicitly but
they can be grasped as such, as when we introspectively reflect
and leveragemeta-awareness. This architecture of cognitive opac-
ity is thought to be that which underwrites human cognitive
capacities in general.

This paper takes steps towards the development of a formal,
computational account of cognitive control as defined above in
terms of cognitive opacity (i.e. meta-awareness) andmental action
(e.g. the control of attention). This will take the form of a ‘com-
putational (neuro)phenomenology’ of processes in question. Neu-
rophenomenology is an influential approach to the naturalistic
study of conscious experience (Varela 1997; Lutz 2002; Ramstead
2015). Computational phenomenology (Ramstead et al. 2021) aims
to leverage advances in computational modelling to formalize the
aspects of lived experience that are revealed by phenomenological
description—e.g. classical phenomenological accounts of the lived
experience of moving about as an embodied agent (Merleau-Ponty
1945) or having an inner consciousness of time (Husserl 1927)—by
providing a model of the inferential processes that would have to
be in play for an agent to have that kind of experience, allowing for
the target phenomenology to be experienced as such (e.g. for such
an account of inner time consciousness, see Varela 1997; Grush
2005; Wiese 2017).

Computational modelling of mental action
We build on recent advances in computational modelling that
are shedding light on the inferential processes underpinning the
perception and behaviour of embodied organisms. These tech-
nical advances make it possible to implement self-reflective,

hierarchically structured inferences and simulate behavioural
dynamics that can be formally linked to cognitive opacity and the
execution of covert (mental) actions, such as attentional control.

At the root of these advances is a biologically plausible, neu-
rocognitive and behavioural modelling framework called ‘active
inference’ (Friston et al. 2016; Friston 2019). Active inference pro-
vides us with a Bayesian mechanics, that is, a mechanics of
knowledge-driven action and active perception, which explains
from first principles how autonomous agents can thrive within
their ever-changing environments. Active inference descends
from, and is closely related to, older and more familiar Bayesian
theories of the brain, such as the Bayesian brain hypothesis (Knill
and Pouget 2004) and predictive coding (Rao and Ballard 1999;
Friston 2005, 2008; Bastos et al. 2012). It casts perception, learn-
ing, and action as essentially being in the same game—that of
gathering evidence for the model that underwrites the existence
of the agent (Friston 2013; Ramstead et al. 2018, 2019a). In this
sense, active inference casts living and cognitive processes as
self-fulfilling prophecies, which gather evidence for an implicit
(generative) model that the agent embodies and enacts (Ramstead
et al. 2019b).

Formal approaches to the study of the capacities for meta-
awareness have recently been developed that leverage ‘parametri-
cally deep active inference’ (Hesp et al. 2021). Parametric depth is
a property of cognitive architectures, such that this architecture
comprises nested belief or knowledge structures, that is, beliefs
about beliefs and inferential processes that operate on (or take
as their input) the results of other inferential processes, as data
for further processing. By construction, such cognitive architec-
tures are capable of a rudimentary form of access to self-states
and meta-awareness. This is because having an internal struc-
ture (a generative model) that evinces parametric depth endows
the agent with higher-level states that renders the results of lower-
level inference (e.g. posterior state and precision estimates) avail-
able as data for further self-inference. This enables the agent to
access and control crucial aspects of themselves (Limanowski and
Friston 2018).

Parametrically deep active inference as it is currently formu-
lated is limited to ‘implicit’ higher-order forms of cognitive access
and control; e.g. it is able to model the deployment of attentional
and emotional ‘processes’ that direct the flow of perceptual infer-
ence and action (Parr and Friston 2017b) but cannot yet model the
agent’s access to, and evaluation and control of, its own atten-
tional ‘states’. Here, we propose an extension of active inference
that overcomes this limitation. To do this, this paper extends
the parametrically deep active inference framework to account
for the agent’s capacity for ‘explicit’ meta-awareness and men-
tal action. This extension endows the agent’s generative model
with a deep, tertiary, hierarchical architecture (see the ‘Methods’
section): policy selection (i.e. the formation of self-fulfilling beliefs
about action) can then be formulated hierarchically, allowing
us to construct an active inference model of an agent’s meta-
awareness of, and control over, aspects of their own generative
model (i.e. higher-level policies that drive transitions in cognitive
states which condition precisions at the lower level).

This approach differs from existing work in active inference
modelling of attentional control (Berk et al. 2016, 2019) or aware-
ness of internal states (Smith et al. 2019a,b) in a few key ways.
Crucially, the ‘depth’ evoked here is not a result of a deci-
sion of the experimenter to model temporal depth (Friston et al.
2017c; Pezzulo et al. 2018; Parr et al. 2020) or conceptual depth
(Smith et al. 2019b; Heins et al. 2020) or even to model the desired
phenomenology of attention and meta-awareness. Instead, the
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hierarchical structure comes from the decision to endow the
model with ‘parametric depth’, i.e. precision-dependent state
inference.

Attentional states (and meta-awareness states) then arise nat-
urally as higher-level state factors, which condition the precision
of observations at the level below (see the ‘Methods’ section). This
is in contrast to positing attentional states as another state factor
on the same level (Berk et al. 2016) or as a goal-dependent precision
modulation (Berk et al. 2019). The focus here is on the interaction
between meta-awareness and attentional control, and we do not
explicitly treat the question of the role of selective attention in
epistemic foraging.

Finally, a novel development here is the hierarchical formula-
tion of policy selection applied to states that parametrize lower
levels. This is similar to the two-level model presented by (Whyte
and Smith 2020), with the distinctions that, here, the levels are
purely parametric (i.e. higher-level state factors are only those
that condition precisions of the level below) and that we extend
this scheme to a third, meta-awareness level. This allows for the
formulation of distinct categories of policies that condition tran-
sitions on a particular parametric level (e.g. attentional shift via
mental action). This builds on previous work on attention as like-
lihood precision (Parr and Friston 2017a,b; Parr et al. 2018) and
attentional control as precision deployment (Feldman and Friston
2010; Brown et al. 2011; Kanai et al. 2015) by providing a gen-
eralizable computational scaffolding for policies that condition
precision beliefs.

In the example treated here of sustained attentional control, it
becomes crucial to be aware of where one’s attention is focused
and to recognize shifts in attention (i.e. distractions) quickly, to
then recalibrate attentional processes accordingly. We demon-
strate that, during a focused attention task, agents possessing a
parametrically deep generative model exhibit the phenomenolog-
ical cycles of focus andmind-wandering that have long been asso-
ciated with focused attention and mindfulness meditation prac-
tices (Lutz et al. 2008). Furthermore, this deep architecture enables
such agents to report on their higher-order observations, such as
the extent to which they are aware of where their attention is
focused. This extension to the active inference framework makes
it possible to plausibly simulate the processes at play in meta-
awareness and cognitive control. More generally, it provides a bio-
logically plausible understanding, derived from first principles, of
the computational architecture required for the emergence of cen-
tral aspects of human phenomenology, namely, meta-awareness
of cognitive states and explicit control of attention.

In summary, in this paper, we argue (i) that conscious mental
action is predicated on a higher-level access to cognitive states,
(ii) that the distinction between partially opaque and fully trans-
parent states and processes can be formalized under deep active
inference via a formal treatment of meta-awareness and its impli-
cations, and (iii) that understanding this inferential architecture
constitutes a first step towards a formal, computational neu-
rophenomenological account of cognitive control in general. The
remainder of this paper is structured as follows. After reviewing
the active inference framework, which forms the methodological
and theoretical backbone of our proposal, we turn to numerical
proofs of principle. We close by discussing the implications of
our model for the study of consciousness, attention, and mental
action generally under active inference.

Methods
Themethodology we employ rests on a generativemodel that cap-
tures the inferential architecture required for the phenomenon

of interest; in this case, the opacity-versus-transparency dis-
tinction and ensuing forms of monitoring and control. Having
specified this model, in the following section, we implement this
model in computational simulations that reproduce the target
behaviour. We illustrate meta-awareness and cognitive control
by examining the emergent dynamics of focused attention and
mind-wandering.Wewill see that simulated agents endowed with
this form of inferential architecture organically reproduce the
relevant phenomenology.

Introduction to the active inference formulation
The key technical innovation presented in this paper is an exten-
sion of the active inference framework derived from the work of
Hesp et al. (2021). It builds on previous work suggesting that to
deliberately attend to a set of states, and thereby render them
opaque, corresponds to the top-down deployment of second-
order inference, i.e. inference about confidence or precision
(Limanowski and Friston 2018, 2020).

Active inference models cast perception, learning, and
behaviour as governed by a single imperative—to minimize vari-
ational free energy (Ramstead et al. 2018; Friston 2019). This vari-
ational free energy is an information theoretic construct that, in
general, quantifies the divergence between observed and expected
data, under a probabilistic model of the process that generated
this data (the generative model). In a nutshell, it scores the proba-
bility of each model of how the data was generated by quantifying
(technically, by providing an upper bound on, or approximation
of) howmuch evidence for the model is provided by the data. This
measure or score is the complement of variational free energy,
and inference based on finding themodel associatedwith the least
free energy is known as variational inference. To minimize vari-
ational free energy, then, is equivalent to maximizing Bayesian
model evidence (Friston et al. 2010; Friston 2019) or self-evidencing
(Hohwy 2016).

Variational inference was originally developed in statistical
mechanics to convert intractable inference problems into easier
optimization problems, where the difficult problems associated
with inferring the latent causes of data are converted into an eas-
ier optimization problem, namely, selecting the model associated
with the least free energy (Feynman 1972). In the current context,
we treat the brain as an empirical scientist that is trying to make
sense of their world, through careful sampling of sensory data (e.g.
visual palpation) and then selecting the perceptual hypotheses
that have the greatest evidence (Gregory, 1980).

Generative models
In this context, variational free energy quantifies the discrep-
ancy between observed outcomes (i.e. the sensory states of an
organism) and the outcomes that would be predicted under a
statistical (generative) model of how their sensory data were pro-
duced, which are thought to be implemented in the networks of
the brain.

Generative models are so-called because they are models of
the ‘generative process’ ‘out there in the world’ that cause (or
generate) our sensory data (Friston et al. 2016). The generative pro-
cess is typically specified using equations of motion that capture
the dynamics of how the environment generates observations.
The active inference agents themselves, of course, do not have
access to the generative process and must deploy inference and
action to guesstimate its structure, but in practice, when simulat-
ing these dynamics, we usually write down the ‘true’ process, as
we will below. The generative models considered here are called
Markov decision processes, a commonly used scheme that applies
to discrete state-spaces.
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Figure 1. A probabilistic graphical model showing a basic generative
model for moment-to-moment perception. This figure depicts a simple
generative model for perception. Inference here inverts the likelihood
mapping from causes to their outcomes, P(o | s), using prior beliefs about
states (D) and sensory data (o), to obtain (or approximate) the most
probable state P(s | o). Here, Bayesian beliefs are noted in bold, bar
notation represents posterior beliefs, σ is the softmax function
(returning a normalized probability distribution), and δ is the Kronecker
delta function (returning 1 for the observed outcome, zeros for all
non-observed outcomes). o is used to denote the predictive posterior
over observations, and o represents the actual observation. For the
derivation of the latent state belief update equations shown, see Friston
et al. (2016, Supplementary Appendix A). [Please note that, by convention
in the active inference literature, the ‘dot’ notation is used to represent a
backwards matrix multiplication and renormalization when applied to a
matrix A of shape (m, n) and a set x of n probabilities, i.e. A·x=y, where
y is a normalized set of m probabilities such that Ay=x. See Friston et al.
(2017c)]. The graphical presentation was adapted from a template given
in Figure 1a in the study by Hesp et al. (2021).

The most basic generative model, written to account for per-
ception, is depicted in Fig. 1. This elementary generative model
quantifies the relation between observations (denoted o) and the
latent or hidden states (s) that caused them. Here, this relation
is captured by a likelihood mapping, denoted A, which encodes
beliefs about how states of the world are related to the observa-
tions that they generate (i.e. ‘assuming that some hidden state s
is the case, what is the probability of observing o?’). Technically,
this likelihood mapping is implemented as a matrix (A) specifying
the probability of a particular observation, given a hidden state;
formally, this is denoted P(o| s). The initial state vector, D, in turn,
specifies beliefs about the most likely state of the world indepen-
dently of any observation, formally, P(s): these are known as prior
(Bayesian) beliefs.

In this context, variational inference moves from the quanti-
ties that the system can access—i.e. its observations, o, its prior
beliefs, P(s), and its beliefs about how its observations are caused
by states of the world, P(o| s)—to the quantity that it is trying to
infer, namely, the most probable cause of its sensations, P(s| o).

We can always associate some level of confidence to each of the
parameters described above. As discussed, precision is defined as
the ‘inverse variance’ of some distribution. Precision is also known
as confidence and captures the degree to which the information
encoded in the associated parameter is reliable. Of note is that
precision already introduces some degree of parametric depth into
the generative model because it is a second-order statistic: it is
a belief about some other beliefs, namely, about how reliable
they are.

In active inference, ‘attentional processes’ have been formu-
lated in terms of the precision (here denotedγA) of—or confidence
in—the likelihoodmapping (the Amatrix; Parr and Friston 2017b).
Since they operate on the basis of second-order statistics (i.e. ‘pre-
cision’), attentional processes are seen as implicitly realizing a
form of cognitive control in this framework. Intuitively, we can see
why precision-modulation over A corresponds with attentional
processes: the precision on A represents the extent to which the
agent believes their observations ‘accurately map onto’ hidden
states. Attending to some stimuli increases the relative weight
or gain on inferences made on the basis of that particular data
or observation. For example, by paying closer attention to an
ambiguous sound, the agent has greater confidence in determin-
ing the location of its origin than when the sound was first heard
without being heeded. The process of combining available data
with estimations of that data’s reliability—in order to arbitrate its
effect (relative to prior beliefs) on the overall inferential process—
is known as ‘precision weighting or precision control’. Under
active inference, this is the candidate mechanism for attentional
modulation of perception (see Fig. 2).

This basic generativemodel can only do posterior state estima-
tion (i.e. perception) on a moment-to-moment basis: it does not
encode knowledge that would allow its user to make predictions
about the future. Active inference models, however, are not con-
fined to processes unfolding from moment to moment. Indeed,
these models have been extended to account for knowledge of
temporal dynamics of states by inducing ‘beliefs about state tran-
sitions’, denoted B. These encode the probability of being in some
state s2 at some time step τ +1, given that the systemwas in state
s1 at time step τ , formally, P(s2 | s1). Equippedwith suchMarkovian
models, an agent can effectively make inferences about future
states of affairs.

Equipping a model with beliefs about state transitions opens
up a whole new domain of inference, namely, controlling obser-
vations through the selection of actions. As such, active inference
is a game of ‘policy selection’. A policy, denoted π, is defined
as a set of beliefs about which actions one is currently under-
taking. Policies are necessary because, in active inference, the
agent must actively infer what course of action they are pursuing,
on the assumption that what they are doing is likely to mini-
mize variational free energy (Friston et al. 2016). Policy selection
is implemented through the updating of beliefs about state tran-
sitions, now informed by the consequences of action. Intuitively,
this implicit view of action is due to the fact that the agent does
not have unmitigated or direct access to the actions that they
undertake. Rather, they can only access the sensory consequences
of those actions, and so, they must infer what they are doing,
given their action prior and their sensory data. A policy, then, is
just a series of state transitions (Bmatrices)—and policy selection
means selecting the sequence of Bmatrices that is associatedwith
the least expected free energy (G). Thus, as the name suggests,
active inference casts action as a form of (variational) inference,
as a self-fulfilling prophecy (Friston 2011).

Two additional parameters of note are the prior preference
mapping (or C matrix), which specifies prior beliefs about sensory
outcomes, and the prior over policies (E). Both these beliefs affect
policy selection directly. The E matrix encodes beliefs about what
the agent would do, independent of the expected free energy in
the current context. The expected free energy scores the posterior
probability of different allowable policies in terms of outcomes.
Selecting a policy that minimizes expected free energy, G, mini-
mizes ‘ambiguity’ and ‘risk’ (see Fig. 3). Here, risk is the difference
between predicted and preferred outcomes under each policy.
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6 Sandved-Smith et al.

Figure 2. A Bayes graph showing a basic generative model of perception with precision. The precision term, γA, over the likelihood mapping A is
sampled from a gamma distribution with inverse temperature parameter βA. The precision weighted likelihood mapping, Ā, is obtained by
exponentiating each element in the ith row and jth column of the A by γA and normalizing (see Parr et al. 2018). For the derivation of the precision
belief update equation shown, see Friston and Parr (2017, Supplementary Appendix A.2). The graphical presentation was adapted from a template
given in Figure 1a in the study by Hesp et al. (2021).

Figure 3. A Bayes graph showing a deep generative model for policy selection. This model is equipped with beliefs about state transitions. Posterior
state beliefs at each time step now depend on beliefs about the previous and subsequent states, mediated by the state transition matrix B. Adapted
from a template given in Figure 2 in the study by Hesp et al. (2021).

Preferred outcomes are parameterized by a C matrix that feeds
into the calculation of the expected free energy for every policy:
in short, prior beliefs implement a bias in the agent’s actionmodel
towards policies that realize preferred outcomes. We refer readers
to Smith et al. (2021) for an in-depth introductory tutorial to active
inference.

Formalizing meta-awareness, attention, and
cognitive control under active inference
Finally, ‘attentional states’ and ‘states of meta-awareness’ can
also be defined in terms of active inference (Hesp et al. 2021). In
such a scheme, a further hierarchical level of states and corre-
sponding processes of posterior state and precision estimation are

D
ow

nloaded from
 https://academ

ic.oup.com
/nc/article/2021/2/niab018/6358635 by U

niversity C
ollege London user on 14 Septem

ber 2021



Towards a computational phenomenology of mental action 7

Figure 4. A probabilistic graphical model showing a deep generative model with second-order, attentional states. This deep generative model includes
a new level of states, denoted s(2), which conditions the precision on the first-order likelihood mapping A(1). Attentional policies, π(2), represent mental
(covert) actions that condition transitions between attentional states. Adapted from a template given in Figure 4 in the study by Hesp et al. (2021).

introduced into the model. In this paper, we define two levels in
addition to the first outlined above. The second level comprises
‘attentional states’ that entrain likelihood mapping precisions at
the first level. The third level compriseswhat onemight call ‘meta-
awareness states’ (i.e. a state representing the degree to which
one is aware of their own attentional state) that entrain likelihood
mapping precisions at the second level. There is nothing special
about these states, other than they generate outcomes at lower
levels that speak—not to which state the world is in but—to the
precision of beliefs about which state the world is in Fig. 4.

As we noted above, attentional processes always already
involve some opacity, in the sense that they take as their input,
and operate on, lower-level (perceptual) states. Deep active infer-
ence models add new hierarchical levels of state inference to
exploit the parametric depth induced by the lower-level state and
(especially) precision estimation. In the parlance of the self-model
theory of subjectivity (Metzinger 2003, 2004), the use of preci-
sion and state estimation at lower levels as data or observations
by higher layers of the model effectively renders the lower levels
opaque. This in turn results in modulation of the precisions at
the first level dependent on ‘attentional control states’ at the sec-
ond level. Having defined attentional states, and having connected
them appropriately to the precisions they control at the first level,
we can treat them the exact same way that we treat other states,
namely, by estimating their posterior expectation through (vari-
ational) inference. In effect, this means that our active inference
agent has to infer in what attentional state they find themselves.

The next, crucial step is to define a transition matrix B(2)

at the second level, which specifies beliefs about ‘transitions
between attentional states’. Since attentional states are just ordi-
nary states—defined at the higher level—we can equip the model
with state transitions at that level as well.

Given this set-up, we can define ‘mental (covert) policy selec-
tion’. Attentional states transition one into the other as well, and
we have defined the B(2) matrix at the second level to capture
the agent’s beliefs about those transitions. This set-up means
‘attentional control’ becomes ‘top-down state-dependent preci-
sion deployment’. Having defined mental state transitions, a

mental policy can now be defined in the usual way—as a pol-
icy that conditions hidden state transitions at the second level,
i.e. affecting the elements of B(2). The key difference is that
these hiddenmental states themselves condition precisions at the
lower level. This provides a formal treatment of mental action
as the deployment of precision as proposed by Limanowski and
Friston (2018), by defining an appropriate generative model show-
ing that covert action arises naturally from the formal definition of
attention.

Finally, we can define a further level of state inference, which
we can associate with the meta-awareness of being in a given
attentional state. These might be called ‘meta-awareness states’,
which take as input the posterior state and precision estimates
at the second (attentional) level. Recall that, to enable the
agent to control the perceptual opacity on the first level, we
defined a second level of the generative model, which observes
state and precision estimates at the first level. The same rea-
soning now applies to attentional states. In order to capture
the phenomenology of deliberate, sustained meta-awareness,
as found in meditation practices (Lutz et al. 2015), we define
a third layer of hidden states, which represents latent meta-
awareness states of the agent. Transitions between states at
this level represent shifts in the level of meta-awareness that
the agent has of where their attention is focused. The resulting
three-level model of meta-awareness and control is presented in
Fig. 5.

One might wonder whether such a level is necessary to model
meta-awareness and attentional opacity, since a precise (opaque)
attentional likelihood mapping A(2) can be defined without the
need for the third level. However, this level is required because
it is necessary for the ‘explicit control of meta-awareness’. Atten-
tional states are hallmark control states, but for some traditions,
such as mindfulness meditation, the question is less about the
mechanisms that selectively enhance or suppress some aspects
of experience and more about accessing and assessing the quality
of these attentional states and processes themselves. To deliber-
ately control their attentional state, after all, the agent must be
explicitly aware of it. This is to say that attentional states at the
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8 Sandved-Smith et al.

Figure 5. A probabilistic graphical model showing a deep generative model with three hierarchical levels of state inference. Higher-level states
condition the likelihood mapping precision at the level below. Attentional states, s(2), modulate the confidence in sensory observations, and
meta-awareness states, s(3), modulate the confidence in higher-order observations.

second levelmust also bemade as opaque as possible, which is the
work done by state inference and control at the meta-awareness
level.

Mathematically, the attentional and meta-awareness state
inference is calculated based on three sources of evidence: prior
beliefs, direct perceptual evidence (e.g. the metacognitive obser-
vation of one’s attentional state), and ascending evidence based
on the precision beliefs of the level below. For the ascending mes-
sages from the ‘continuous’ expected precision to the ‘discrete’
states, we use Bayesian model reduction (Friston et al. 2017b)
(for the derivation, see Friston et al. 2018) to evaluate the marginal
likelihood under the priors associatedwith each higher-level state.
This gives, in the case of the attentional evidence for example,

st(2) = σ

 ln B(2)s(2)t−1︸ ︷︷ ︸
prior expectation

− ln
β(f,d) − ε

(1)
0,τ

β(f,d)

β

β− ε
(1)
0,τ︸ ︷︷ ︸

ascending evidence

+γ
(2)
A,t ln A(2) o

(2)

t︸ ︷︷ ︸
perceptual evidence


(1)

where ε is the updating term for the inverse precision at the
first level [see Friston and Parr (2017) for the derivation], β(f,d)

is the value of the inverse precision associated with each atten-
tional state we simulate (see the ‘Results’ section), β(f) =0.5, and
β(d) =2.0. This corresponds to a high precision ‘focused’ state
(γ (f) =2.0) and a low precision ‘distracted’ state (γ (d) =0.5). These
effectively set the upper and lower bounds for the likelihood
precision.

ε
(1)
0,τ = o(1)τ −A

(1)
S
(1)
τ ln A(1) (2)

This approach is analogous to that taken by Hesp and col-
leagues in their treatment of higher-level affective states (Hesp

et al. 2021), here applied to the likelihood precision, γA, rather than
model precision, γG.

Another key difference here is the inclusion of the percep-
tual evidence afforded by the direct observations caused by
these higher-level latent states, e.g. o(2). Note that this evi-
dence is only available when the higher-level likelihood pre-
cision (e.g. γ

(2)
A ) is non-zero, i.e. when the state is opaque

to some degree. As a result, the transparency–opacity distinc-
tion can be directly related to the evidence calculation. For
example, with zero precision, the cognitive state is not con-
sciously observed; however, it can still be inferred implicitly
(and therefore experienced transparently) from the evidence
ascending from the level below. The transition from transpar-
ent to opaque is therefore related to the accumulation of per-
ceptual evidence afforded by a non-zero, higher-level likelihood
precision.

To summarize, this paper makes three novel contributions
to parametrically deep active inference models of cognitive

control. The first contribution is to stipulatively define atten-
tional and meta-awareness ‘states’ as the mechanism of opac-
ity control at different hierarchical levels. The second is to

provide a formal definition of attentional and meta-awareness
‘control’ via an account of the higher-level policy selection.

The third is to formally demonstrate the relationship between

meta-awareness states and the capacity for deliberate atten-
tional control. The resulting model is presented in Fig. 5. In
what follows, we simulate belief updating during an attentional

task using the above inference architectures to illustrate the

emergence of meta-awareness-modulated cycles of focus and
mind-wandering.
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Towards a computational phenomenology of mental action 9

Results
This section provides numerical (simulation) results to show how
the model described in the previous section engenders opacity–
transparency phenomenology. This provides a formal account
of meta-awareness and also a model for attentional control—
formalized as state-dependent, precision control. We will present
simulation results of an agent endowed with this deep three-layer
generative model during a perceptual task. The following subsec-
tions will provide commentary on the results, beginning at the
perceptual level and building up to the cross-level dynamics of
the full deep model.

Level 1: attention, opacity, and awareness
With the above architecture in place, we can begin to examine how
the process of sustained attentional control unfolds. Beginning at
the first hierarchical level, we can simulate the effect of equip-
ping a generative model with attentional states by examining
numerically how varying precision on A(1) impacts the dynamics
of perceptual posterior state estimation.

In the simulation below, depicted in Fig. 7, an active inference
agent is shown in a ‘passive’ visual oddball paradigm, i.e. only
perception without action is modelled. In such a paradigm, the
agent is shown a repetitive visual cue, the ‘standard’ stimulus.
This repeating cue is occasionally disrupted by the presentation
of a different cue, the ‘deviant’ stimulus (or so-called oddball).
Here, the standard and deviant stimuli are simulated by a per-
ceptual state factor, s(1), with two levels representing the two
possible states of the ‘visual’ cue shown to the agent. The genera-
tive process of this state is predetermined, with a deviant stimulus
shown every 20th time step. This is meant to reproduce changes
in the content of perception during phases of attention and dis-
traction. Sensory habituation is not modelled here. At each time
step, the agent infers the latent cause of their observations, i.e. the
actual stimuli that were presented. To demonstrate the impact of
a changing attentional state, the agent is held artificially in the
‘focused’ state for the first half of the trial. This endows them
with a high level of sensory precision (high precision γA over
the likelihood mapping A(1)) and provides a simple illustration
of the perceptual belief updating of a participant who is ‘paying
attention’. In the second half of the trial, on the other hand, the
attentional state is set to ‘distracted’ resulting in a lower preci-
sion over A(1). Mathematically speaking, changing the expected
precisionγA can have the same effect as updates in individual ele-
ments of A(1) in response to incoming evidence, which can render
the likelihood mapping more or less informative. The core differ-
ence is that the expected precision applies to all the elements of
the likelihood mapping, thereby providing empirical constraints
on the mapping and a different kind of statistical structure to the
generativemodel. If this structure is apt to describe the high-order
statistics of the sensorium at hand, it will promote free energy
minimization.

When ‘focused’, the agent is able to update their beliefs
about what they are seeing immediately upon presentation of the
deviant stimulus. When ‘distracted’, they do not have enough con-
fidence in their observations to update their beliefs as quickly, and
as a result, their beliefs about hidden states are not fully adjusted
when the deviant is presented. This illustrates a ubiquitous aspect
of precision control and attentional gain, namely, precision plays
the role of a ‘rate constant’ in evidence accumulation and conse-
quent belief updating. In other words, when attending to a partic-
ular stream of information, you will converge on posterior beliefs
more quickly because certain aspects of sensory information are

afforded more precision and have a greater influence on belief
updating, at higher levels of hierarchical inference.

Level 2: simulating inference of hidden
attentional states: the cycle of focused attention
and distraction
We now introduce a version of the oddball paradigm described
above, which implements a form of mental action. In this mod-
ified oddball paradigm, the agent’s task is to move their atten-
tional focus to the stimuli (the repeating uniform stimulus) and
to maintain focus on this object, thereby remaining in a specific
attentional state (‘focused’).

Extant work on the phenomenological dynamics of focused
attention tasks has shown that, in general, an individual will
cycle back and forth between two states: remaining focused and
becoming distracted (Lutz et al. 2008; Hasenkamp et al. 2012). This
cycle goes through four distinct phases. To begin with, individu-
als are focused on a particular task or stimulus and successfully
maintain their attention on a focal point or object. We label this
attentional state ‘focused’. At some point, they will inevitably
become distracted, transitioning to an attentional state that we
label as ‘distracted’. Crucially, this state transition is, at least ini-
tially, unknown to individuals for a short period of time. This
period is known as ‘mind-wandering’, a state of being distracted
while also unaware of being distracted. Eventually, individuals
realize they are no longer focused and become aware of hav-
ing become distracted, a moment we label ‘aware of distraction’,
which then prompts them to redirect their focus to the task at
hand (i.e. returning to attentional state ‘focused’) (see Fig. 8).

Asking participants to remain focused on a particular stimulus
is equivalent, in this scheme, to asking them tomaintain a higher-
order attentional state (‘focused’). In order to remain focused
and notice whether they have become distracted, the agent must
continuously infer which attentional state they are in. By defin-
ing attentional states as controllable higher-order latent states
(i.e. as states that can be selected through policy selection at the
second level), we effectively allow the agent to control what they
are attending to.

We can test whether this architecture gives rise to the atten-
tional dynamics of attention and distractionwemight expect. This
well-documented phenomenological cycle of focused attention,
described above, emerges organically from simulations when we
cast attentional states as a higher-level latent states that the agent
must infer.

In the simulation reported below, an active inference agent
infers which attentional state they are currently in. We have built
in a preference for the agent to observe itself in the ‘focused’
state (this is built into the prior preference or C(2) matrix), which
encodes the task instruction to focus on the stimuli. Thus, the
agent expects to be in the ‘focused’ state and will engage in

active inference such that this expectation or preference is ful-
filled: if the agent infers that they have become ‘distracted’, they
will enact a policy to return them to the ‘focused’ state. Sec-
ond, we have programmed a ‘generative process’ that regulates

the ‘true’ state transitions that the agent undergoes. Under this
generative process, there is a policy-dependent probability that

the agent will transition from one attentional state to the other
(see Fig. 6).

The results are shown in Fig. 10. Here, the agent becomes

distracted several times during the trial. Since the agent must

‘infer’ their attentional state, however, this fact is not immedi-
ately inferred. Observations of the agent’sattentional state result
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10 Sandved-Smith et al.

Figure 6. The probabilistic graphical model used to simulate an agent capable of attentional control during a focused-attention perceptual task.
Hidden states at each level have a single factor with two levels, the perceptual state can be either ‘standard’ or ‘deviant’, the attentional state can be
‘focused’ or ‘distracted’, and the meta-awareness state can be ‘high’ or ‘low’. Higher-level states determine the likelihood precision at the level below.
The agent is given the instruction to pay attention to a visual oddball stimulus; this is modelled as a preference in C(2) to observe the ‘focused’
outcome at the second level. Action here is only defined on the second level, with two possible actions u(2), ‘stay’ and ‘switch’, which condition the
attentional transition matrix B(2) as shown.

Figure 7. Simulation of an active inference agent attending an oddball paradigm. The agent is equipped with higher-level attentional states, s(2), which
modulate the precision of the likelihood mapping A(1). In the first half of the trial, the agent is in the ‘focused’ state, which confers a higher precision,
i.e. the agent is generally more confident about how their observations map onto states. In the second half of the trial, the precision drops as the agent
moves into the ‘distracted’ state. As a result, their beliefs about latent states are updated more slowly.

in a prediction error that causes the agent to revise their beliefs
after a few observations, with increasing confidence.

Here, the focused stage is the period during which the agent’s
beliefs align with the true (‘focused’) attentional state. The mind-
wandering stage is well captured by the numerical results, as
the moments when the true attentional state has transitioned to
‘distracted’, while the agent’s beliefs have not yet been updated
(the agent still believes they are ‘focused’). The agent is effec-
tively unaware of their distracted state: their ‘mind’ haswandered.
Over the following time steps, the agent collects enough evidence
(i.e. higher-order observations of their attentional state and
ascending precision evidence) to update their beliefs and to ‘real-
ize’ that their attentional state has shifted (to ‘distracted’). Finally,
now aware of their being distracted, the agent performs a mental
action at the second level, to transition the attentional state back
to the ‘focused’ state (see Fig. 9). This occurs once the agent infers

a higher probability of being ‘distracted’ than ‘focused’. Note that
the agent updates their attentional beliefs rapidly when the odd-
ball is presented. The prediction error caused by the change in
perception provides stronger ascending evidence arising from the
change in first-level precision beliefs. This result is in line with
empirical work, which shows that mind-wandering is increased
when perceptual demands are low (Lin et al. 2016).

Level 3: simulating the impact of changes in
meta-awareness states on attentional control
As discussed above, the ability to maintain attentional focus and

to quickly become aware of distractions has been associated with

the level of meta-awareness of the individual (Mrazek et al. 2013).

We now examine the impact of changing meta-awareness states
on attentional state inference dynamics. We demonstrate that
meta-awareness-dependent attentional control arises naturally
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Towards a computational phenomenology of mental action 11

from casting meta-awareness states as third-order states that
modulate the likelihood precision of second-order attentional
states, much like attentional states modulate the precision of
first-order perceptual states.

In Fig. 11, a simulated agent performs the same focused atten-
tion task as just described, with one notable change: we introduce
the third level meta-awareness states. As in Fig. 7, for the sake
of a clear demonstration, we have defined the generative pro-
cess at this level such that the agent is in a high meta-awareness
state for the first half of the trial and low for the second half. It
should be noted that we could have let the generative model roam
its meta-awareness states freely. However, the effects emergent
from these recursive interactions—however interesting for future
research—would make simulation results hard to interpret for
the reader. Therefore, we have opted for a clear meta-awareness
manipulation for clarity.

We report that the decreased precision of A(2) due to lowmeta-
awareness (i.e. reduced opacity of the attentional states) results
in an extended period of mind-wandering before the agent accu-
mulates enough evidence to realize they have become distracted.

Figure 8. Diagram of the phenomenological cycle that occurs during
sustained attention tasks. The process cycles through being focused,
becoming distracted, becoming aware of the distraction, and then
refocusing.

In fact, in this example, the agent does not realize their mind
has wandered until the contents of their perception changes (i.e.
the oddball is presented), which provides further evidence that
they have lost focus, prompting them to switch their attentional
state. The reduction of the duration of mind-wandering, due
to stronger meta-awareness modulation and increased precision
afforded to attentional states, is an established relationship in
attentional phenomenology, particularly in relation to focused
attention meditation practices (Mrazek et al. 2013). This relation-
ship is illustrated here as an organic dynamic that emerges nat-
urally from the hierarchical architecture of higher-level states
encoding precisions at lower levels. This completes our numerical
analysis.

Discussion and directions for future
research
Expanding the model to other parameters
The model presented makes it possible to simulate, under a sin-
gle framework, both physical (overt) actions and mental (covert)
actions—in effect providing a single model of perceptual infer-
ence and behaviour that can provide a computational bridge
between mental and embodied life. This work provides a prin-
cipled approach to modelling complex behaviours in tasks that
require bothmotor action selection (e.g. saccadicmovements) and
the deliberate deployment of attentional resources (e.g. paying
attention to a particular stimulus to the exclusion of another).
Our model also provides insights into the form of cognitive archi-
tectures, which may be required to support the emergence of
cognitive monitoring (i.e. phenomenological opacity of mental
states) and control.

We have focused on attentional processes that implicate the
likelihood mapping or A matrix. The natural next step is to con-
sider the implications of generalizing this treatment, to model
the access to—and control of—the precision of other parts of the
generative model: e.g. the precision of beliefs about state transi-
tions (B), preferences over outcomes (C), prior beliefs over states
(D), prior beliefs about policies (E), and the expected variational
free energy itself (G; as in Hesp et al. 2021). Mathematically, it is
perfectly valid to condition the prior precisions associated with

Figure 9. Illustration of the computational conditions associated with each phenomenological stage of sustained attention. This figure depicts
schematically the main phases of the cycle of focused attention and distraction. Here, being distracted (i.e. mind-wandering) is characterized as the
period following the shift in the true latent attentional state from ‘focused’ to ‘distracted’, but before the agent has updated their beliefs to align with
the true latent attentional state, i.e. the period in which the agent believes that they are ‘focused’ while they are actually ‘distracted’.
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12 Sandved-Smith et al.

Figure 10. Simulation of the attentional cycle of an agent during an oddball perceptual task. Numerical demonstration of the cycle of distraction,
meta-awareness of distraction, and redirecting focus. The active inference agent is inferring their own perceptual and attentional states at each time
step. The state posterior lines are bounded by 100% confidence in either state. In this example, the agent is never fully confident in inferring the
deviant perceptual posterior since it is only presented for a single time step, not long enough for more evidence to accumulate. At the beginning of the
task, the agent is ‘focused’. At some time t, they become distracted. After a few moments, the agent infers a higher probability of being ‘distracted’
than ‘focused’ and given that they would prefer to observe the outcome associated with the ‘focused’ state selects a mental action, u(2), to ‘switch’
their attentional state.

Figure 11. Simulation of an agent with changing levels of meta-awareness during an oddball perceptual task. This figure depicts an active inference
agent that shifts from a state of high meta-awareness (i.e. high precision on A(2)) to a state of low meta-awareness halfway through the trial. Note that
the period of state evidence accumulation is increased (i.e. longer mind-wandering) when the agent is in a low meta-awareness state.
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Towards a computational phenomenology of mental action 13

Figure 12. A Bayes graph of a deep generative model of mental action generalized over all precision parameters. With this architecture, higher-level
states s(2) contain multiple factors modulating all lower-level precisions. This structure provides a direction towards the formalization of a wide
phenomenology of mental states and policies (π(2)). Adapted from a template given in Figure 4 in the study by Hesp et al. (2021).

any part of the generative model on a higher-level state. Figure 12
depicts the structure of a generativemodel that might enable this.

The result of this innovation is a diversification of the mental
actions available to the agent. Thus, higher-level states s(2) stand
for hidden mental states generally and are not restricted to mod-
elling attentional states. Mapping the precision of the other parts
of the generative model onto dimensions of phenomenological
experience is beyond the scope of this paper. We anticipate that
this strategy could provide a general framework to conceptualize
different styles of higher-order regulations and mental actions. It
could, for instance, provide a computational scaffold for exam-
ining how different cultural and social settings shape cognitive
styles in differentways (Proust and Fortier 2018), with implications
for our understanding of the development of meta-awareness
and cross-cultural variability in psychiatric symptomatology.
An exciting avenue will be to use this approach to refine and
extend the modelling of various psychiatric conditions such as
mood disorders (Kiverstein et al. 2020).

This modelling strategy, we emphasize, is completely
general—and is not restricted to modelling attentional processes.
It shares a commitment to understanding perception in terms of
inference (Von Helmholtz 1924; Gregory 1968, 1980; Fleming 2020)
and, in particular, the high-order aspects of perceptual inference.
In terms of enactive perception (Wurtz et al. 2011), active infer-
ence provides a principled description of how actions are deployed
to reduce variational free energy; in this generic scheme, there
is no fundamental difference between a simple reflex, a series of
complexmovements, and amental action—c.f., the premotor the-
ory of attention (Rizzolatti et al. 1987). We model mental action as
a generic hidden process that is at the root of many aspects of
human mental life. Other such aspects, such as emotional self-
awareness and control, would be implemented in the same way
(i.e. through the deployment of precision). For example, in the
work by Hesp et al. (2021), expected precision of the action model
itself (G) has been associated with valenced responses. Our model
is generic and adaptable, but it is not currently implemented to
cover other kinds of mental action. We intend to explore such
directions in future work.

The distinction between—on the one hand—accessing or per-
ceiving one’s own mental states and—on the other hand—
controlling them is crucial here. It is the control aspect that is
novel in our approach in the computational modelling tradition.
Indeed, computationally speaking, one could argue that hierar-
chical generative models (e.g. empirical Bayes) have been around
for a long time and that they are useful in allowing us to imple-
ment perception and learning as inference in a way that enables
to infer the (deep) causal structure of the environment. This part
is not exactly novel. Such a hierarchical structure underlies main-
stream approaches in machine learning via deep neural networks
(e.g. convolutional neural network and recurrent neural networks,
which build up a hierarchical model with hidden layers pertain-
ing to different features at different scales). What is novel about
our model is the coupling of this deep inferential architecture
with ‘action and its control’, that is, we do not speak merely
of deep or hierarchical inference but of deep ‘active’ inference.
Our modelling strategy offers us a means of controlling previ-
ously uncontrolled parameters through the top-down deployment
of precisions.

Towards a computational phenomenology
Another future possible application of the present framework
is to provide a formal tool to explore, theoretically and exper-
imentally, the ‘naturalization of phenomenology’ as proposed
by the proponents of neurophenomenology (Varela 1996, 1997;
Roy et al. 1999; Petitot 1999; Lutz 2002; Lutz and Thompson
2003). Naturalizing phenomenology is a scientific research pro-
gramme that aims to characterize the mind–brain system on
its own terms, as it were—the way that it appears to itself for
itself, as a subject of experience, rather than only focusing on
it as a mere thing (Roy et al. 1999; Ramstead 2015). What is
at stake here is how best to characterize the relation between
first-person data obtained from phenomenological accounts of
lived experience to third-person cognitive and neuroscientific
accounts. For instance, how might one relate the direct lived
experience of watching a beautiful sunset to its physiological
manifestation?
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Because the proponents of neurophenomenology believe that
first-person experience opens onto a field of phenomena that is
irreducible to any other, they typically acknowledge the episte-
mological importance of bridging the kind of knowledge gleaned
from first-person (phenomenological) and third-person (ordinary)
data (Petitot 1999). Neurophenomenology has been described as
the search for ‘generative passages’ between the neurobiologi-
cal, phenomenological, and mathematical levels of description,
going beyond the description of mere isomorphisms between
these levels, towards mutual epistemological and methodolog-
ical accountability and cross-fertilization (Varela 1997; Petitot
1999; Lutz 2002). Neurophenomenology aims to bridge the gap
between these kinds of data via the formal, metaphysically neu-
tral levels of the description provided by mathematics and com-
putational work. The strategy of neurophenomenology (Varela
1996) then is to build and validate an integrative model of con-
scious experience based on ‘mutual constraints’ between the
domain of phenomena revealed by experience, the domain of
neurophysiological states that are measured by cognitive neuro-
sciences, and the domain circumscribed by formal models (Varela
1996, 1997).

The pioneers of neurophenomenology had sought to bridge
this gap using formal models and analytical tools from dynami-
cal systems theory. From our point of view, these can be seen as
anticipating, without the same degree of formal precision, several
core principles of the active inference framework. The formal-
ism available at the time was not yet well enough equipped to
model explicitly those subtle phenomenological constructs such
as transparency, opacity, meta-awareness, and mental action. In
this view, the present model could extend and complement this
earlier endeavour.

‘Computational phenomenology’ formalizes the aspects of
lived experience that are made accessible by the phenomenologi-
cal description andmodels of the inferential processes that enable
the emergence of target phenomenologies (Ramstead et al. 2021).
From the point of view of computational phenomenology, deep
active inference models can act as maps of the processes and fac-
tors at play in the emergence and dynamics of lived or conscious
experience. Indeed, the model presented here first started from
the phenomenology of focused attention and emerged as a model
of the architecture of beliefs and inferences that wouldmake such
a phenomenology possible and interpretable as such an experi-
ence. The degree of complexity of the model was commanded
and constrained by the target phenomenology; in this case, we
needed three hierarchical levels. The general form of this kind of
investigation—using active inference directly as a means of for-
malizing the basic requirements that can explain the structure
of lived experience—may point towards an interesting path for
computational neurophenomenology.

Conclusion
The aim of this paper was to begin moving towards a com-
putational phenomenology of mental action, meta-awareness,
and attentional control based on deep active inference. Under-
standing these processes of cognitive awareness and control is
critical to the study of human beings, since it is perhaps the
most characteristic facet of the human experience. We used the
modelling and mathematical tools of the active inference frame-
work to construct an inferential architecture (a generative model)
for meta-awareness of, and control of, attentional states. This

model consists of three nested levels, which afforded, respec-
tively, (i) perception of the external environment, (ii) perception of
internal attentional states, and (iii) perception of meta-awareness
states. This architecture enables the modelling of higher-level,
mental (covert) action, granting the agent some control of their
own attentional processes. We replicated in silico some of the
more crucial features ofmeta-awareness, including some features
of its phenomenology and relationship to attentional control.
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