16,000 research outputs found

    Connectionism, Analogicity and Mental Content

    Get PDF
    In Connectionism and the Philosophy of Psychology, Horgan and Tienson (1996) argue that cognitive processes, pace classicism, are not governed by exceptionless, “representation-level” rules; they are instead the work of defeasible cognitive tendencies subserved by the non-linear dynamics of the brain’s neural networks. Many theorists are sympathetic with the dynamical characterisation of connectionism and the general (re)conception of cognition that it affords. But in all the excitement surrounding the connectionist revolution in cognitive science, it has largely gone unnoticed that connectionism adds to the traditional focus on computational processes, a new focus – one on the vehicles of mental representation, on the entities that carry content through the mind. Indeed, if Horgan and Tienson’s dynamical characterisation of connectionism is on the right track, then so intimate is the relationship between computational processes and representational vehicles, that connectionist cognitive science is committed to a resemblance theory of mental content

    Neural scaling laws for an uncertain world

    Full text link
    Autonomous neural systems must efficiently process information in a wide range of novel environments, which may have very different statistical properties. We consider the problem of how to optimally distribute receptors along a one-dimensional continuum consistent with the following design principles. First, neural representations of the world should obey a neural uncertainty principle---making as few assumptions as possible about the statistical structure of the world. Second, neural representations should convey, as much as possible, equivalent information about environments with different statistics. The results of these arguments resemble the structure of the visual system and provide a natural explanation of the behavioral Weber-Fechner law, a foundational result in psychology. Because the derivation is extremely general, this suggests that similar scaling relationships should be observed not only in sensory continua, but also in neural representations of ``cognitive' one-dimensional quantities such as time or numerosity

    Does the number sense represent number?

    Get PDF
    On a now orthodox view, humans and many other animals are endowed with a “number sense”, or approximate number system (ANS), that represents number. Recently, this orthodox view has been subject to numerous critiques, with critics maintaining either that numerical content is absent altogether, or else that some primitive analog of number (‘numerosity’) is represented as opposed to number itself. We distinguish three arguments for these claims – the arguments from congruency, confounds, and imprecision – and show that none succeed. We then highlight positive reasons for thinking that the ANS genuinely represents numbers. The upshot is that proponents of the orthodox view should not feel troubled by recent critiques of their position

    Adversarial attacks hidden in plain sight

    Full text link
    Convolutional neural networks have been used to achieve a string of successes during recent years, but their lack of interpretability remains a serious issue. Adversarial examples are designed to deliberately fool neural networks into making any desired incorrect classification, potentially with very high certainty. Several defensive approaches increase robustness against adversarial attacks, demanding attacks of greater magnitude, which lead to visible artifacts. By considering human visual perception, we compose a technique that allows to hide such adversarial attacks in regions of high complexity, such that they are imperceptible even to an astute observer. We carry out a user study on classifying adversarially modified images to validate the perceptual quality of our approach and find significant evidence for its concealment with regards to human visual perception
    corecore