7,385 research outputs found

    A vision-guided parallel parking system for a mobile robot using approximate policy iteration

    Get PDF
    Reinforcement Learning (RL) methods enable autonomous robots to learn skills from scratch by interacting with the environment. However, reinforcement learning can be very time consuming. This paper focuses on accelerating the reinforcement learning process on a mobile robot in an unknown environment. The presented algorithm is based on approximate policy iteration with a continuous state space and a fixed number of actions. The action-value function is represented by a weighted combination of basis functions. Furthermore, a complexity analysis is provided to show that the implemented approach is guaranteed to converge on an optimal policy with less computational time. A parallel parking task is selected for testing purposes. In the experiments, the efficiency of the proposed approach is demonstrated and analyzed through a set of simulated and real robot experiments, with comparison drawn from two well known algorithms (Dyna-Q and Q-learning)

    One-Shot Learning of Manipulation Skills with Online Dynamics Adaptation and Neural Network Priors

    Full text link
    One of the key challenges in applying reinforcement learning to complex robotic control tasks is the need to gather large amounts of experience in order to find an effective policy for the task at hand. Model-based reinforcement learning can achieve good sample efficiency, but requires the ability to learn a model of the dynamics that is good enough to learn an effective policy. In this work, we develop a model-based reinforcement learning algorithm that combines prior knowledge from previous tasks with online adaptation of the dynamics model. These two ingredients enable highly sample-efficient learning even in regimes where estimating the true dynamics is very difficult, since the online model adaptation allows the method to locally compensate for unmodeled variation in the dynamics. We encode the prior experience into a neural network dynamics model, adapt it online by progressively refitting a local linear model of the dynamics, and use model predictive control to plan under these dynamics. Our experimental results show that this approach can be used to solve a variety of complex robotic manipulation tasks in just a single attempt, using prior data from other manipulation behaviors

    Intrinsic Motivation and Mental Replay enable Efficient Online Adaptation in Stochastic Recurrent Networks

    Full text link
    Autonomous robots need to interact with unknown, unstructured and changing environments, constantly facing novel challenges. Therefore, continuous online adaptation for lifelong-learning and the need of sample-efficient mechanisms to adapt to changes in the environment, the constraints, the tasks, or the robot itself are crucial. In this work, we propose a novel framework for probabilistic online motion planning with online adaptation based on a bio-inspired stochastic recurrent neural network. By using learning signals which mimic the intrinsic motivation signalcognitive dissonance in addition with a mental replay strategy to intensify experiences, the stochastic recurrent network can learn from few physical interactions and adapts to novel environments in seconds. We evaluate our online planning and adaptation framework on an anthropomorphic KUKA LWR arm. The rapid online adaptation is shown by learning unknown workspace constraints sample-efficiently from few physical interactions while following given way points.Comment: accepted in Neural Network
    • ā€¦
    corecore