87 research outputs found

    Tactile Information Processing for the Orientation Behaviour of Sand Scorpions

    Get PDF

    Development of an intelligent scorpion detection technique using vibration analysis

    Get PDF
    A possible solution to address the problem of Scorpion stings is the capability of detecting its presence earlier before it stings. This paper presents efforts in Scorpion detection using substrate vibration modelling approach. An eight stage approach has been presented in this work. Using sinusoidal signal, signal representing Scorpion behaviour was firstly sampled and then amplified before transmitting to a nearby receiving module. The received signal undergoes filtering for noise removal before being modelled for coefficients determination. The computed coefficients were then clustered for analysis of behavioural determination. Results obtained in this work show that the proposed technique can be used for Scorpion detection

    The Development of Bio-Inspired Cortical Feature Maps for Robot Sensorimotor Controllers

    Get PDF
    Full version unavailable due to 3rd party copyright restrictions.This project applies principles from the field of Computational Neuroscience to Robotics research, in particular to develop systems inspired by how nature manages to solve sensorimotor coordination tasks. The overall aim has been to build a self-organising sensorimotor system using biologically inspired techniques based upon human cortical development which can in the future be implemented in neuromorphic hardware. This can then deliver the benefits of low power consumption and real time operation but with flexible learning onboard autonomous robots. A core principle is the Self-Organising Feature Map which is based upon the theory of how 2D maps develop in real cortex to represent complex information from the environment. A framework for developing feature maps for both motor and visual directional selectivity representing eight different directions of motion is described as well as how they can be coupled together to make a basic visuomotor system. In contrast to many previous works which use artificially generated visual inputs (for example, image sequences of oriented moving bars or mathematically generated Gaussian bars) a novel feature of the current work is that the visual input is generated by a DVS 128 silicon retina camera which is a neuromorphic device and produces spike events in a frame-free way. One of the main contributions of this work has been to develop a method of autonomous regulation of the map development process which adapts the learning dependent upon input activity. The main results show that distinct directionally selective maps for both the motor and visual modalities are produced under a range of experimental scenarios. The adaptive learning process successfully controls the rate of learning in both motor and visual map development and is used to indicate when sufficient patterns have been presented, thus avoiding the need to define in advance the quantity and range of training data. The coupling training experiments show that the visual input learns to modulate the original motor map response, creating a new visual-motor topological map.EPSRC, University of Plymouth Graduate Schoo

    Venom Yield, Regeneration, and Composition in the Centipede Scolopendra Polymorpha

    Get PDF
    In this dissertation, I investigated yield, regeneration, and composition of centipede venom. In the first of three empirical studies, I investigated how size influenced venom volume yield and protein concentration in Scolopendra polymorpha and S. subspinipes. I also examined additional potential influences on yield in S. polymorpha, including relative forcipule size, relative mass, geographic origin, sex, time in captivity, and milking history. Volume yield was positively linearly related to body length in both species; however, body length and protein concentration were uncorrelated. In S. polymorpha, yield was most influenced by body length, but was also positively associated with relative forcipule length and relative body mass. In the second study, I investigated venom volume and total protein regeneration during the 14-day period subsequent to venom extraction in S. polymorpha. I further tested the hypothesis that venom protein components, separated by RP-FPLC, undergo asynchronous synthesis. During the first 48 hours, volume and protein mass increased linearly. However, protein regeneration lagged behind volume regeneration, with only 65–86% of venom volume and 29–47% of protein mass regenerated during the first 2 days. No significant additional regeneration occurred over the subsequent 12 days. Analysis of chromatograms of individual venom samples revealed that five of 10 chromatographic regions and 12 of 28 peaks demonstrated changes in percent of total peak area among milking intervals, indicating that venom proteins are regenerated asynchronously. In the third study, I characterized the venom composition of S. polymorpha using proteomic methods. I demonstrated that the venom of S. polymorpha is complex, generating 23 bands by SDS-PAGE and 56 peaks by RP-FPLC. MALDI TOF MS revealed hundreds of components with masses ranging from 1014.5 to 82863.9 Da. The distribution of molecular masses was skewed toward smaller peptides and proteins, with 72% of components found below 12 kDa. BLASTp sequence similarity searching of MS/MSderived amino acid sequences demonstrated 20 different sequences with similarity to known venom components, including serine proteases, ion-channel activators/inhibitors, and neurotoxins. In Appendix A, I reviewed how animals strategically deploy various emissions, including venom, highlighting how the metabolic and ecological value of these emissions leads to their judicious use

    Vergleichende Funktionsmorphologie der Haftstrukturen bei Spinnentieren (Arthropoda: Arachnida).

    Get PDF
    Attachment is one of the major interactions between an organism and its environment. An enormous diversity of organs or secretory products has been evolved to enhance adhesion and friction with various substrates. The biological functions comprise maintenance of position, locomotion, prey capture, defence, reproduction or dispersal. There are numerous studies that deal with this issue in lizards, frogs, insects, barnacles, mussels and echinoderms, but the second largest class of arthropods, the Arachnida, are highly neglected. This work surveys the attachment organs and structures, and adhesive secretions occurring in this class and discusses the relationship between morphology and function, evolutionary trends, and biomimetic potential. The found diversity comprises interlocking and clamping devices (like claws, spines, hooks, pincer, locking piercer and raptorial legs), smooth and hairy adhesive pads, suckers, and hardening and viscid glue. Mechanical attachment is found in every arachnid order. The membrane based smooth adhesive pads occur in pseudoscorpions (Pseudoscorpiones), camel spiders (Solifugae), ticks (Ixodida and Holothyrida), mites (Opilioacarida, Mesostigmata, Sarcoptiformes and Trombidiformes), harvestmen nymphs (Opiliones), and prenymphs of scorpions (Scorpiones), whip spiders (Amblypygi) and whip scorpions (Thelyphonida). Hairy adhesive pads are found in spiders (Araneae), harvestmen (Opiliones), mites (Trombidiformes), and hooded tickspiders (Ricinulei). A unique micro-patterned adhesive pad (‘smooth’ pad with spatulae) occurs in whip spiders (Amblypygi). Suckers are present in mites (Sarcoptiformes and Trombidiformes). Hardening glue is produced by spiders (Araneae), whip spiders (Amblypygi), whip scorpions (Thelyphonida), scorpions (Scorpiones), harvestmen (Opiliones), pseudoscorpions (Pseudoscorpiones), ticks (Ixodida), and mites (Mesostigmata, Sarcoptiformes and Trombidiformes). Viscid secretions for attachment purposes are produced by spiders (Araneae), harvestmen (Opiliones), and mites (Mesostigmata and Trombidiformes). The mechanical function and fine structure of selected attachment devices was studied, namely the arolia of whip spiders, whip scorpions, scorpions, pseudoscorpions and ticks, the tenent setae of some mites, the glandular setae and secretion of harvestmen, and the silken attachment discs of spiders. Further morphological examinations were performed on the scopulae of harvestmen and ricinuleids, the arolia of harvestmen and the secretions serving camouflage with soil particles in harvestmen and mites. Most structures and secretion properties have remarkable analogies among insects, lizards and tree frogs, which illustrate the optimal biological solutions for universal or specific attachment. This holds for the shape of claws, the spatulate or (rarer) mushroom-like shape of contact elements in adhesive hairs, the inner directed fibrillation of smooth adhesive pads, and the viscoelastic properties of prey capture adhesives. However, some of the described attachment devices are rather unique. In scorpion prenymphs the perhaps most simple type of an adhesive foot pad was found, represented by the non-sclerotized sac-like tip of the pretarsus that is hold in shape by the internal fluid pressure and can be invaginated by a muscle. An aroliar shape building a narrow, transverse contact has evolved in three different orders of arachnids. This structure presumably enhances the ability to switch quickly between a distribution and concentration of stress, which is of high importance for dynamic adhesion. In whip-spiders an arolium was found that exhibits hexagonal microstructures with spatulate tips, which have previously only known from hairy adhesive pads. These pads can generate a high adhesive strength, comparable to spiders and geckoes, even in the absence of fluids. The hexagonal order presumably permits a rapid drainage, enhancing the adhesion on wet surfaces, as known from tree frogs. The prehensile tarsi of harvestmen have dense pads of thin pointed setae, permitting a secure grip without the necessity of adhesive structures. The glandular setae of harvestmen exhibit special microstructures that arrest a droplet of viscid glue even at high pulling stresses. The silken attachment discs of spiders are secretory glue products with a unique hierarchical structure enhancing the flaw tolerance and attachment performance on anti-adhesive surfaces. The results may be of high relevance for our understanding of the function and evolution of attachment devices, as well as for the life history, behaviour, ecology and phylogeny of arachnids. The findings may also be a source of inspiration for biomimetic approaches and demonstrate that the high neglecting of arachnids in biomechanic research is unjustified.Befestigung ist eine der wichtigsten Interaktionen zwischen einem Organismus und seiner Umwelt. Zu diesem Zweck entstand im Laufe der Evolution eine enorme Vielfalt an Klammer- und Haftorganen sowie klebrigen Sekreten. Ihre biologischen Funktionen umfassen Positions-Beibehaltung, Fortbewegung, Beutefang, Verteidigung, Reproduktion und Verbreitung. Zahlreiche Studien befassen sich mit dem Aufbau, der mechanischen Funktion und der stofflichen Zusammensetzung solcher Organe oder Sekrete bei Echsen, Fröschen, Insekten, Seepocken, Muscheln oder Stachelhäutern, aber die zweitgrößte Klasse der Gliederfüßer (Arthropoda), die Spinnentiere (Arachnida), sind bei dieser Forschung weitgehend ignoriert. Diese Arbeit gibt einen Überblick über Haftorgane, -strukturen, und -sekrete in dieser Tierklasse und diskutiert den Zusammenhang zwischen deren Morphologie und Funktion, evolutionäre Trends und ihr Potenzial für die Bionik. Die Haftorgane der Arachniden umfassen Verhakung- und Klammer-Vorrichtungen (Krallen, Stacheln, Haken, Zangen, Riegel, Klammer- und Fangbeine), glatte und haarige Haftpolster, Saugnäpfe, sowie aushärtende oder schleimartige Klebstoffe. Vorrichtungen zur mechanischen Haftung, wie Krallen, treten in jeder Arachniden-Ordnung auf. Die membran-basierten glatten Haftpolster treten bei den Pseudoskorpionen (Pseudoscorpiones), Walzenspinnen (Solifugae), Zecken (Ixodida und Holothyrida), Milben (Opilioacarida, Mesostigmata, Sarcoptiformes und Trombidiformes), Weberknecht-Nymphen (Opiliones), sowie den Pränymphen von Skorpionen (Scorpiones), Geißelspinnen (Amblypygi) und Geißelskorpionen (Thelyphonida) auf. Hafthaare (mit spatelförmigen Terminalstrukturen) kommen bei Spinnen (Araneae), Weberknechten (Opiliones), Milben (Trombidiformes) und Kapuzenspinnen (Ricinulei) vor. Eine einzigartige Form eines ‚glatten’ Haftpolsters mit spatulären Strukturen wurde in Geißelspinnen (Amblypygi) gefunden. Saugnäpfe finden sich bei einigen Milben (Sarcoptiformes und Trombidiformes). Aushärtender Klebstoff wird produziert von Spinnen (Araneae), Geißelspinnen (Amblypygi), Geißelskorpionen (Thelyphonida), Skorpionen (Scorpiones), Weberknechten (Opiliones), Pseudoskorpionen (Pseudoscorpiones), Zecken (Ixodida) und Milben (Mesostigmata, Sarcoptiformes und Trombidiformes). Schleimartige Klebstoffe gibt es bei Spinnen (Araneae), Weberknechten (Opiliones) und einigen Milben (Mesostigmata und Trombidiformes). Die mechanische Funktion und Feinstruktur wurde an ausgewählten Haftstrukturen näher untersucht: die Arolien der Geißelspinnen, Geißelskorpione, Skorpione, Pseudoskorpione und Zecken, die Hafthaare einiger Milben, die Drüsenhaare und Haftsekrete von Weberknechten, sowie die seidenen Haftscheiben der Spinnen. Desweiteren wurden morphologische Untersuchungen durchgeführt an den Scopulae von Weberknechten und Kapuzenspinnen, den Arolien bei Weberknechten, sowie den Sekreten zur Anhaftung von Bodenpartikeln zur Tarnung bei Weberknechten und Milben. Für die meisten Strukturen und Sekrete gibt es erstaunlich ähnliche Analogien bei Insekten, Echsen und Fröschen, was die optimalen biologischen Lösungen für universelle oder spezifische Haftung aufzeigt. Dies gilt für die Form und Struktur von Krallen, die spatuläre oder (seltener) pilzkopfartige Form von adhäsiven Kontaktelementen, die faserige innere Struktur glatter Haftpolster, sowie die Viskoelastizität schleimartiger Klebstoffe zum Beutefang. Einige der beschriebenen Haftstrukturen sind dagegen Besonderheiten der Spinnentiere. Bei den Pränymphen der Skorpione wurde die vielleicht basalste Art eines adhäsiven Fußpolsters gefunden, gebildet von der nicht-sklerotisierten sack-artigen Spitze des Prätarsus. Diese wird in Form gehalten durch den inneren Flüssigkeitsdruck und lässt sich durch einen Muskel zurück ziehen. Eine besondere Form des Aroliums, welche mit dem Substrat eine schmale Kontaktfläche quer zur Beinachse bildet, ist in drei Arachniden-Ordnungen unabhängig voneinander entstanden. Dies verbessert wahrscheinlich die Fähigkeit schnell zwischen Stressverteilung und Stresskonzentration zu wechseln, was für dynamisches Haften von großer Bedeutung ist. In Geißelspinnen wurde ein Arolium gefunden das hexagonale Mikrostrukturen mit apikalen Spatulae aufweist. Spatulae waren zuvor nur von Hafthaaren bekannt. Die Haftpolster der Geißelspinnen können auch ohne die Kapillarkraft durch Sekrete eine große Haftstärke generieren, vergleichbar mit den haarigen Haftpolstern von Spinnen und Geckos. Die hexagonalen Strukturen begünstigen wahrscheinlich den Ausfluss von Flüssigkeiten aus dem Kontakt, was den Halt auf nassen Oberflächen verbessert, ein Prinzip das von den Haftzehen von Baumfröschen bekannt ist. Die vielgliedrigen Greiffüße von Weberknechten sind mit dichten Polstern feiner Häärchen besetzt, was vermutlich einen sicheren Griff auf zahlreichen Oberflächen ermöglicht, ganz ohne die Notwendigkeit von adhäsiven Strukturen. Die Drüsenhaare von Weberknechten zeichnen sich durch den Besatz mit speziellen Mikrotrichien aus, wodurch sich der anhaftende klebrige Sekret-Tropfen selbst bei starkem Zug nicht ablöst. Die seidenen Haftscheiben von Spinnen sind sekretorische Klebstoff-Produkte mit einer einzigartigen hierarchischen Struktur, die die Haftung auf mikrostrukturierten und anti-adhäsiven Oberflächen verbessert. Die Ergebnisse können von hoher Relevanz für das Verständnis über die Funktion und Evolution von Haftstrukturen, sowie der Biologie, der Ökologie, dem Verhalten und der Systematik der Arachniden sein. Sie können auch eine Inspirationsquelle für bionische Ansätze zur Lösung technischer Probleme oder der Verbesserung von Produkten sein. Die Studie zeigt, dass bei Arachniden eine Fülle spannender Mechanismen zu finden sind, und sie damit wertvolle Studienobjekte der Biomechanik sind

    2018 - The Twenty-third Annual Symposium of Student Scholars

    Get PDF
    The full program book from the Twenty-third Annual Symposium of Student Scholars, held on April 19, 2018. Includes abstracts from the presentations and posters.https://digitalcommons.kennesaw.edu/sssprograms/1020/thumbnail.jp
    • …
    corecore