19 research outputs found

    ART THROUGH A DIGITAL LENS: A STUDY OF THE EFFECTS OF NEW MEDIAS ON THE MUSEUM, ITS WORKS, AND THE PUBLIC.

    Get PDF
    Over the last two decades imagery viewed on the internet has grown immensely. Museums, though slow to embrace it, have begun to upload digital images of their traditional artwork to their websites and onto their social media channels. In large measure, the COVID pandemic accelerated this move to engage audiences they feared would dissipate as museum doors closed. Moving digital images online though means giving over control to the protocol and systems of the internet, to profit-seeking corporations, and the volatility of social media platforms. The museum’s long-established authority over artists, artworks, and exhibitions is usurped by power structures existing in capitalization, digitization, and optimization. A digital image of a traditional artwork moves away from its role as a copy of the original to become a new artefact in novel territory as a separate entity. An artwork on a social media feed is detached from the organizational and curatorial oversight of the museum and its work as a representative of the original work of art. It joins a stream of pictures in the ceaseless social media flow where it loses narrative and context to become instead a form of communication. It is also subject to unknowable algorithms designed by large conglomerates. Museums, with stretched budgets and limited staff, place their digital collections into these frameworks without considering what may be lost in efforts to “digitize”. This research uses theories of digimodernism, hypermodernism, and mediation at the interface between viewer, screen, and original object to take a broad look at what digitizing means for the artwork and the museum. It offers suggestions and discussion on how museums can use their institutional abilities and public trust to be engaged and active in their communities in the age of the internet

    The end of stigma? Understanding the dynamics of legitimisation in the context of TV series consumption

    Get PDF
    This research contributes to prior work on stigmatisation by looking at stigmatisation and legitimisation as social processes in the context of TV series consumption. Using in-depth interviews, we show that the dynamics of legitimisation are complex and accompanied by the reproduction of existing stigmas and creation of new stigmas

    Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries

    Get PDF
    This two-volume set LNCS 12962 and 12963 constitutes the thoroughly refereed proceedings of the 7th International MICCAI Brainlesion Workshop, BrainLes 2021, as well as the RSNA-ASNR-MICCAI Brain Tumor Segmentation (BraTS) Challenge, the Federated Tumor Segmentation (FeTS) Challenge, the Cross-Modality Domain Adaptation (CrossMoDA) Challenge, and the challenge on Quantification of Uncertainties in Biomedical Image Quantification (QUBIQ). These were held jointly at the 23rd Medical Image Computing for Computer Assisted Intervention Conference, MICCAI 2020, in September 2021. The 91 revised papers presented in these volumes were selected form 151 submissions. Due to COVID-19 pandemic the conference was held virtually. This is an open access book

    Complexity in Economic and Social Systems

    Get PDF
    There is no term that better describes the essential features of human society than complexity. On various levels, from the decision-making processes of individuals, through to the interactions between individuals leading to the spontaneous formation of groups and social hierarchies, up to the collective, herding processes that reshape whole societies, all these features share the property of irreducibility, i.e., they require a holistic, multi-level approach formed by researchers from different disciplines. This Special Issue aims to collect research studies that, by exploiting the latest advances in physics, economics, complex networks, and data science, make a step towards understanding these economic and social systems. The majority of submissions are devoted to financial market analysis and modeling, including the stock and cryptocurrency markets in the COVID-19 pandemic, systemic risk quantification and control, wealth condensation, the innovation-related performance of companies, and more. Looking more at societies, there are papers that deal with regional development, land speculation, and the-fake news-fighting strategies, the issues which are of central interest in contemporary society. On top of this, one of the contributions proposes a new, improved complexity measure

    Recent Advances in Signal Processing

    Get PDF
    The signal processing task is a very critical issue in the majority of new technological inventions and challenges in a variety of applications in both science and engineering fields. Classical signal processing techniques have largely worked with mathematical models that are linear, local, stationary, and Gaussian. They have always favored closed-form tractability over real-world accuracy. These constraints were imposed by the lack of powerful computing tools. During the last few decades, signal processing theories, developments, and applications have matured rapidly and now include tools from many areas of mathematics, computer science, physics, and engineering. This book is targeted primarily toward both students and researchers who want to be exposed to a wide variety of signal processing techniques and algorithms. It includes 27 chapters that can be categorized into five different areas depending on the application at hand. These five categories are ordered to address image processing, speech processing, communication systems, time-series analysis, and educational packages respectively. The book has the advantage of providing a collection of applications that are completely independent and self-contained; thus, the interested reader can choose any chapter and skip to another without losing continuity

    Challenges for engineering students working with authentic complex problems

    Get PDF
    Engineers are important participants in solving societal, environmental and technical problems. However, due to an increasing complexity in relation to these problems new interdisciplinary competences are needed in engineering. Instead of students working with monodisciplinary problems, a situation where students work with authentic complex problems in interdisciplinary teams together with a company may scaffold development of new competences. The question is: What are the challenges for students structuring the work on authentic interdisciplinary problems? This study explores a three-day event where 7 students from Aalborg University (AAU) from four different faculties and one student from University College North Denmark (UCN), (6th-10th semester), worked in two groups at a large Danish company, solving authentic complex problems. The event was structured as a Hackathon where the students for three days worked with problem identification, problem analysis and finalizing with a pitch competition presenting their findings. During the event the students had workshops to support the work and they had the opportunity to use employees from the company as facilitators. It was an extracurricular activity during the summer holiday season. The methodology used for data collection was qualitative both in terms of observations and participants’ reflection reports. The students were observed during the whole event. Findings from this part of a larger study indicated, that students experience inability to transfer and transform project competences from their previous disciplinary experiences to an interdisciplinary setting

    Exploring the practical use of a collaborative robot for academic purposes

    Get PDF
    This article presents a set of experiences related to the setup and exploration of potential educational uses of a collaborative robot (cobot). The basic principles that have guided the work carried out have been three. First and foremost, study of all the functionalities offered by the robot and exploration of its potential academic uses both in subjects focused on industrial robotics and in subjects of related disciplines (automation, communications, computer vision). Second, achieve the total integration of the cobot at the laboratory, seeking not only independent uses of it but also seeking for applications (laboratory practices) in which the cobot interacts with some of the other devices already existing at the laboratory (other industrial robots and a flexible manufacturing system). Third, reuse of some available components and minimization of the number and associated cost of required new components. The experiences, carried out following a project-based learning methodology under the framework of bachelor and master subjects and thesis, have focused on the integration of mechanical, electronic and programming aspects in new design solutions (end effector, cooperative workspace, artificial vision system integration) and case studies (advanced task programming, cybersecure communication, remote access). These experiences have consolidated the students' acquisition of skills in the transition to professional life by having the close collaboration of the university faculty with the experts of the robotics company.Postprint (published version
    corecore