26,738 research outputs found

    Monostable controllers for adaptive behavior

    No full text
    Recent artificial neural networks for machine learning have exploited transient dynamics around globally stable attractors, inspired by the properties of cortical microcolumns. Here we explore whether similarly constrained neural network controllers can be exploited for embodied, situated adaptive behaviour. We demonstrate that it is possible to evolve globally stable neurocontrollers containing a single basin of attraction, which nevertheless sustain multiple modes of behaviour. This is achieved by exploiting interaction between environmental input and transient dynamics. We present results that suggest that this globally stable regime may constitute an evolvable and dynamically rich subset of recurrent neural network configurations, especially in larger networks. We discuss the issue of scalability and the possibility that there may be alternative adaptive behaviour tasks that are more ‘attractor hungry’

    Symbol Emergence in Robotics: A Survey

    Full text link
    Humans can learn the use of language through physical interaction with their environment and semiotic communication with other people. It is very important to obtain a computational understanding of how humans can form a symbol system and obtain semiotic skills through their autonomous mental development. Recently, many studies have been conducted on the construction of robotic systems and machine-learning methods that can learn the use of language through embodied multimodal interaction with their environment and other systems. Understanding human social interactions and developing a robot that can smoothly communicate with human users in the long term, requires an understanding of the dynamics of symbol systems and is crucially important. The embodied cognition and social interaction of participants gradually change a symbol system in a constructive manner. In this paper, we introduce a field of research called symbol emergence in robotics (SER). SER is a constructive approach towards an emergent symbol system. The emergent symbol system is socially self-organized through both semiotic communications and physical interactions with autonomous cognitive developmental agents, i.e., humans and developmental robots. Specifically, we describe some state-of-art research topics concerning SER, e.g., multimodal categorization, word discovery, and a double articulation analysis, that enable a robot to obtain words and their embodied meanings from raw sensory--motor information, including visual information, haptic information, auditory information, and acoustic speech signals, in a totally unsupervised manner. Finally, we suggest future directions of research in SER.Comment: submitted to Advanced Robotic

    The Mechanics of Embodiment: A Dialogue on Embodiment and Computational Modeling

    Get PDF
    Embodied theories are increasingly challenging traditional views of cognition by arguing that conceptual representations that constitute our knowledge are grounded in sensory and motor experiences, and processed at this sensorimotor level, rather than being represented and processed abstractly in an amodal conceptual system. Given the established empirical foundation, and the relatively underspecified theories to date, many researchers are extremely interested in embodied cognition but are clamouring for more mechanistic implementations. What is needed at this stage is a push toward explicit computational models that implement sensory-motor grounding as intrinsic to cognitive processes. In this article, six authors from varying backgrounds and approaches address issues concerning the construction of embodied computational models, and illustrate what they view as the critical current and next steps toward mechanistic theories of embodiment. The first part has the form of a dialogue between two fictional characters: Ernest, the �experimenter�, and Mary, the �computational modeller�. The dialogue consists of an interactive sequence of questions, requests for clarification, challenges, and (tentative) answers, and touches the most important aspects of grounded theories that should inform computational modeling and, conversely, the impact that computational modeling could have on embodied theories. The second part of the article discusses the most important open challenges for embodied computational modelling

    Incremental embodied chaotic exploration of self-organized motor behaviors with proprioceptor adaptation

    Get PDF
    This paper presents a general and fully dynamic embodied artificial neural system, which incrementally explores and learns motor behaviors through an integrated combination of chaotic search and reflex learning. The former uses adaptive bifurcation to exploit the intrinsic chaotic dynamics arising from neuro-body-environment interactions, while the latter is based around proprioceptor adaptation. The overall iterative search process formed from this combination is shown to have a close relationship to evolutionary methods. The architecture developed here allows realtime goal-directed exploration and learning of the possible motor patterns (e.g., for locomotion) of embodied systems of arbitrary morphology. Examples of its successful application to a simple biomechanical model, a simulated swimming robot, and a simulated quadruped robot are given. The tractability of the biomechanical systems allows detailed analysis of the overall dynamics of the search process. This analysis sheds light on the strong parallels with evolutionary search

    Embodied Artificial Intelligence through Distributed Adaptive Control: An Integrated Framework

    Full text link
    In this paper, we argue that the future of Artificial Intelligence research resides in two keywords: integration and embodiment. We support this claim by analyzing the recent advances of the field. Regarding integration, we note that the most impactful recent contributions have been made possible through the integration of recent Machine Learning methods (based in particular on Deep Learning and Recurrent Neural Networks) with more traditional ones (e.g. Monte-Carlo tree search, goal babbling exploration or addressable memory systems). Regarding embodiment, we note that the traditional benchmark tasks (e.g. visual classification or board games) are becoming obsolete as state-of-the-art learning algorithms approach or even surpass human performance in most of them, having recently encouraged the development of first-person 3D game platforms embedding realistic physics. Building upon this analysis, we first propose an embodied cognitive architecture integrating heterogenous sub-fields of Artificial Intelligence into a unified framework. We demonstrate the utility of our approach by showing how major contributions of the field can be expressed within the proposed framework. We then claim that benchmarking environments need to reproduce ecologically-valid conditions for bootstrapping the acquisition of increasingly complex cognitive skills through the concept of a cognitive arms race between embodied agents.Comment: Updated version of the paper accepted to the ICDL-Epirob 2017 conference (Lisbon, Portugal

    Multifunctionality in embodied agents: Three levels of neural reuse

    Get PDF
    The brain in conjunction with the body is able to adapt to new environments and perform multiple behaviors through reuse of neural resources and transfer of existing behavioral traits. Although mechanisms that underlie this ability are not well understood, they are largely attributed to neuromodulation. In this work, we demonstrate that an agent can be multifunctional using the same sensory and motor systems across behaviors, in the absence of modulatory mechanisms. Further, we lay out the different levels at which neural reuse can occur through a dynamical filtering of the brain-body-environment system's operation: structural network, autonomous dynamics, and transient dynamics. Notably, transient dynamics reuse could only be explained by studying the brain-body-environment system as a whole and not just the brain. The multifunctional agent we present here demonstrates neural reuse at all three levels.Comment: Accepted at Cognitive Science Conference, 201

    Embodied Robot Models for Interdisciplinary Emotion Research

    Get PDF
    Due to their complex nature, emotions cannot be properly understood from the perspective of a single discipline. In this paper, I discuss how the use of robots as models is beneficial for interdisciplinary emotion research. Addressing this issue through the lens of my own research, I focus on a critical analysis of embodied robots models of different aspects of emotion, relate them to theories in psychology and neuroscience, and provide representative examples. I discuss concrete ways in which embodied robot models can be used to carry out interdisciplinary emotion research, assessing their contributions: as hypothetical models, and as operational models of specific emotional phenomena, of general emotion principles, and of specific emotion ``dimensions''. I conclude by discussing the advantages of using embodied robot models over other models.Peer reviewe

    Integration of Action and Language Knowledge: A Roadmap for Developmental Robotics

    Get PDF
    “This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder." “Copyright IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.”This position paper proposes that the study of embodied cognitive agents, such as humanoid robots, can advance our understanding of the cognitive development of complex sensorimotor, linguistic, and social learning skills. This in turn will benefit the design of cognitive robots capable of learning to handle and manipulate objects and tools autonomously, to cooperate and communicate with other robots and humans, and to adapt their abilities to changing internal, environmental, and social conditions. Four key areas of research challenges are discussed, specifically for the issues related to the understanding of: 1) how agents learn and represent compositional actions; 2) how agents learn and represent compositional lexica; 3) the dynamics of social interaction and learning; and 4) how compositional action and language representations are integrated to bootstrap the cognitive system. The review of specific issues and progress in these areas is then translated into a practical roadmap based on a series of milestones. These milestones provide a possible set of cognitive robotics goals and test scenarios, thus acting as a research roadmap for future work on cognitive developmental robotics.Peer reviewe
    corecore