997 research outputs found

    Computation of Interaural Time Difference in the Owl's Coincidence Detector Neurons

    Get PDF
    Both the mammalian and avian auditory systems localize sound sources by computing the interaural time difference (ITD) with submillisecond accuracy. The neural circuits for this computation in birds consist of axonal delay lines and coincidence detector neurons. Here, we report the first in vivo intracellular recordings from coincidence detectors in the nucleus laminaris of barn owls. Binaural tonal stimuli induced sustained depolarizations (DC) and oscillating potentials whose waveforms reflected the stimulus. The amplitude of this sound analog potential (SAP) varied with ITD, whereas DC potentials did not. The amplitude of the SAP was correlated with firing rate in a linear fashion. Spike shape, synaptic noise, the amplitude of SAP, and responsiveness to current pulses differed between cells at different frequencies, suggesting an optimization strategy for sensing sound signals in neurons tuned to different frequencies

    Ultrasound cleaning of microfilters

    Get PDF

    Active Noise Control in The New Century: The Role and Prospect of Signal Processing

    Full text link
    Since Paul Leug's 1933 patent application for a system for the active control of sound, the field of active noise control (ANC) has not flourished until the advent of digital signal processors forty years ago. Early theoretical advancements in digital signal processing and processors laid the groundwork for the phenomenal growth of the field, particularly over the past quarter-century. The widespread commercial success of ANC in aircraft cabins, automobile cabins, and headsets demonstrates the immeasurable public health and economic benefits of ANC. This article continues where Elliott and Nelson's 1993 Signal Processing Magazine article and Elliott's 1997 50th anniversary commentary~\cite{kahrs1997past} on ANC left off, tracing the technical developments and applications in ANC spurred by the seminal texts of Nelson and Elliott (1991), Kuo and Morgan (1996), Hansen and Snyder (1996), and Elliott (2001) since the turn of the century. This article focuses on technical developments pertaining to real-world implementations, such as improving algorithmic convergence, reducing system latency, and extending control to non-stationary and/or broadband noise, as well as the commercial transition challenges from analog to digital ANC systems. Finally, open issues and the future of ANC in the era of artificial intelligence are discussed.Comment: Inter-Noise 202

    Sculpting Unrealities: Using Machine Learning to Control Audiovisual Compositions in Virtual Reality

    Get PDF
    This thesis explores the use of interactive machine learning (IML) techniques to control audiovisual compositions within the emerging medium of virtual reality (VR). Accompanying the text is a portfolio of original compositions and open-source software. These research outputs represent the practical elements of the project that help to shed light on the core research question: how can IML techniques be used to control audiovisual compositions in VR? In order to find some answers to this question, it was broken down into its constituent elements. To situate the research, an exploration of the contemporary field of audiovisual art locates the practice between the areas of visual music and generative AV. This exploration of the field results in a new method of categorising the constituent practices. The practice of audiovisual composition is then explored, focusing on the concept of equality. It is found that, throughout the literature, audiovisual artists aim to treat audio and visual material equally. This is interpreted as a desire for balance between the audio and visual material. This concept is then examined in the context of VR. A feeling of presence is found to be central to this new medium and is identified as an important consideration for the audiovisual composer in addition to the senses of sight and sound. Several new terms are formulated which provide the means by which the compositions within the portfolio are analysed. A control system, based on IML techniques, is developed called the Neural AV Mapper. This is used to develop a compositional methodology through the creation of several studies. The outcomes from these studies are incorporated into two live performance pieces, Ventriloquy I and Ventriloquy II. These pieces showcase the use of IML techniques to control audiovisual compositions in a live performance context. The lessons learned from these pieces are incorporated into the development of the ImmersAV toolkit. This open-source software toolkit was built specifically to allow for the exploration of the IML control paradigm within VR. The toolkit provides the means by which the immersive audiovisual compositions, Obj_#3 and Ag Fás Ar Ais Arís are created. Obj_#3 takes the form of an immersive audiovisual sculpture that can be manipulated in real-time by the user. The title of the thesis references the physical act of sculpting audiovisual material. It also refers to the ability of VR to create alternate realities that are not bound to the physics of real-life. This exploration of unrealities emerges as an important aspect of the medium. The final piece in the portfolio, Ag Fás Ar Ais Arís takes the knowledge gained from the earlier work and pushes the boundaries to maximise the potential of the medium and the material

    Active Control of the Acoustic Field in a Vehicle Cabin

    Get PDF
    In this thesis, a thorough investigation on acoustic noise control systems for realistic automotive scenarios is presented. The thesis is organized in two parts dealing with the main topics treated: Active Noise Control (ANC) systems and Virtual Microphone Technique (VMT), respectively. The technology of ANC allows to increase the driver's/passenger's comfort and safety exploiting the principle of mitigating the disturbing acoustic noise by the superposition of a secondary sound wave of equal amplitude but opposite phase. Performance analyses of both FeedForwrd (FF) and FeedBack (FB) ANC systems, in experimental scenarios, are presented. Since, environmental vibration noises within a car cabin are time-varying, most of the ANC solutions are adaptive. However, in this work, an effective fixed FB ANC system is proposed. Various ANC schemes are considered and compared with each other. In order to find the best possible ANC configuration which optimizes the performance in terms of disturbing noise attenuation, a thorough research of \gls{KPI}, system parameters and experimental setups design, is carried out. In the second part of this thesis, VMT, based on the estimation of specific acoustic channels, is investigated with the aim of generating a quiet acoustic zone around a confined area, e.g., the driver's ears. Performance analysis and comparison of various estimation approaches is presented. Several measurement campaigns were performed in order to acquire a sufficient duration and number of microphone signals in a significant variety of driving scenarios and employed cars. To do this, different experimental setups were designed and their performance compared. Design guidelines are given to obtain good trade-off between accuracy performance and equipment costs. Finally, a preliminary analysis with an innovative approach based on Neural Networks (NNs) to improve the current state of the art in microphone virtualization is proposed

    Application of Active Noise Control to Reduce Cabin Noise in Single Engine General Aviation Aircraft

    Get PDF
    The application of active noise control to reduce cabin noise in single engine, general aviation aircraft is investigated through the use of the \u27filtered x\u27 least mean square algorithm and a simple acoustic feedforward method to generate a reference signal is tested. The system is designed to utilize one reference signal and up to two feedback signals and two audio speakers. The feedforward system consists of a microphone placed in close proximity to the front windshield and isolated from the cabin noise. Cabin noise and reference signals are recorded during flight in a Cessna 172 Skyhawk, a Piper Cherokee 140 and a Piper Malibu Mirage. The recorded data is used in laboratory tests to evaluate the capability of the control system to reduce the cabin noise signal with the recorded reference signal. The reference signal was found to lack coherence with the cabin noise in most aircraft which limited the noise reductions. Alternative feedforward methods are investigated and an alternative reference signal is tested in a laboratory simulation. The results with the recorded data and the modified reference signal are detailed in each case

    Prediction & Active Control of Multi-Rotor Noise

    Get PDF
    Significant developments have been made in designing and implementation of Advanced Air Mobility Vehicles (AAMV). However, wider applications in urban areas require addressing several challenges, such as safety and quietness. These vehicles differ from conventional helicopter in that they operate at a relatively lower Reynolds number. More chiefly, they operate with multiples of rotors, which may pose some issues aerodynamically, as well as acoustically. The aim of this research is to first investigate the various noise sources in multi-rotor systems. High-fidelity simulations of two in-line counter-rotating propellers in hover, and in forward flight conditions are performed. Near field flow and acoustic properties were resolved using Hybrid LES-Unsteady RANS approach. Far-field sound predictions were performed using Ffowcs-Williams-Hawkings formulation. The two-propeller results in hovering are compared with that of the single propeller. This enabled us to identify the aerodynamic changes resulting from the proximity of the two propellers to each other and to understand the mechanisms causing the changes in the radiated sound. It was discovered that there is a dip in the thrust due to the relative proximity of the rotors. Owing to this, there is also some acoustic banding above the rotors mainly because they operate at the same rotational rate. We then considered the forward flight case and compared it with the corresponding hovering case. This enabled us to identify the aerodynamic changes resulting from the incoming stream. By examining the near acoustic field, the far-field spectra, the Spectral Proper Orthogonal Decomposition, and by conducting periodic averaging, we were able to identify the sources of the changes to the observed tonal and broadband noise. The convection of the oncoming flow was seen to partially explain the observed enhancement in the tonal and BBN, compared to the hovering case. It is well known that High fidelity methods are critical in predicting the full spectrum of rotor acoustics. However, these methods can be prohibitively expensive. We present here an investigation of the feasibility of reduction methods such as Proper Orthogonal Decomposition as well as Dynamic Mode decomposition for reduction of data obtained via Hybrid Large-Eddy – Unsteady Reynolds Averaged Navier Stokes approach (HLES) to be used further to obtain additional parameters. Specifically, we investigate how accurate reduced models of the high-fidelity computations can be used to predict the far-field noise. It was found that POD was capable of reconstructing accurately the parameters of interest with 15-40% of the total mode energies, whereas the DMD could only reconstruct primitive parameters such as velocity and pressure loosely. A rank truncation convergence criterion \u3e 99.8% was needed for better performance of the DMD algorithm. In the far-field spectra, DMD could only predict the tonal contents in the lower- mid frequencies whiles the POD could reproduce all frequencies of interest. Lastly, we develop an active rotor noise control technology to reduce the in-plane thickness noise associated with multi-rotor Advanced Air Mobility Vehicles (AAMV). An actuation signal is determined via the Ffowcs-Williams-Hawking (FWH) formula. Two in-line rotors are considered and we showed that the FWH-determined actuation signal can produce perfect cancellation at a point target. However, the practical need is to achieve noise reduction over an azimuthal zone, not just a single point. To achieve this zonal noise reduction, an optimization technique is developed to determine the required actuation signal produced by the on-blade distribution of embedded actuators on the two rotors. For the specific geometry considered here, this produced about 9 dB reduction in the in-plane thickness noise during forward flight of the two rotors. We further developed a technology that replaces using a point actuator on each bladed by distributed micro actuators system to achieve the same noise reduction goal with significantly reduced loading amplitudes per actuator. Overall, this research deepens the knowledge base of multi-rotor interaction. We utilize several techniques for extracting various flow and acoustic features that help understand the dynamics of such systems. Additionally, we provide a more practical approach to active rotor noise control without a performance penalty to the rotor system

    Adaptive Flow Control of Low Reynolds Number Aerodynamics Using a Dielectric Barrier Discharge Actuator

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/77022/1/AIAA-2009-378-858.pd

    High-performance hardware accelerators for image processing in space applications

    Get PDF
    Mars is a hard place to reach. While there have been many notable success stories in getting probes to the Red Planet, the historical record is full of bad news. The success rate for actually landing on the Martian surface is even worse, roughly 30%. This low success rate must be mainly credited to the Mars environment characteristics. In the Mars atmosphere strong winds frequently breath. This phenomena usually modifies the lander descending trajectory diverging it from the target one. Moreover, the Mars surface is not the best place where performing a safe land. It is pitched by many and close craters and huge stones, and characterized by huge mountains and hills (e.g., Olympus Mons is 648 km in diameter and 27 km tall). For these reasons a mission failure due to a landing in huge craters, on big stones or on part of the surface characterized by a high slope is highly probable. In the last years, all space agencies have increased their research efforts in order to enhance the success rate of Mars missions. In particular, the two hottest research topics are: the active debris removal and the guided landing on Mars. The former aims at finding new methods to remove space debris exploiting unmanned spacecrafts. These must be able to autonomously: detect a debris, analyses it, in order to extract its characteristics in terms of weight, speed and dimension, and, eventually, rendezvous with it. In order to perform these tasks, the spacecraft must have high vision capabilities. In other words, it must be able to take pictures and process them with very complex image processing algorithms in order to detect, track and analyse the debris. The latter aims at increasing the landing point precision (i.e., landing ellipse) on Mars. Future space-missions will increasingly adopt Video Based Navigation systems to assist the entry, descent and landing (EDL) phase of space modules (e.g., spacecrafts), enhancing the precision of automatic EDL navigation systems. For instance, recent space exploration missions, e.g., Spirity, Oppurtunity, and Curiosity, made use of an EDL procedure aiming at following a fixed and precomputed descending trajectory to reach a precise landing point. This approach guarantees a maximum landing point precision of 20 km. By comparing this data with the Mars environment characteristics, it is possible to understand how the mission failure probability still remains really high. A very challenging problem is to design an autonomous-guided EDL system able to even more reduce the landing ellipse, guaranteeing to avoid the landing in dangerous area of Mars surface (e.g., huge craters or big stones) that could lead to the mission failure. The autonomous behaviour of the system is mandatory since a manual driven approach is not feasible due to the distance between Earth and Mars. Since this distance varies from 56 to 100 million of km approximately due to the orbit eccentricity, even if a signal transmission at the light speed could be possible, in the best case the transmission time would be around 31 minutes, exceeding so the overall duration of the EDL phase. In both applications, algorithms must guarantee self-adaptability to the environmental conditions. Since the Mars (and in general the space) harsh conditions are difficult to be predicted at design time, these algorithms must be able to automatically tune the internal parameters depending on the current conditions. Moreover, real-time performances are another key factor. Since a software implementation of these computational intensive tasks cannot reach the required performances, these algorithms must be accelerated via hardware. For this reasons, this thesis presents my research work done on advanced image processing algorithms for space applications and the associated hardware accelerators. My research activity has been focused on both the algorithm and their hardware implementations. Concerning the first aspect, I mainly focused my research effort to integrate self-adaptability features in the existing algorithms. While concerning the second, I studied and validated a methodology to efficiently develop, verify and validate hardware components aimed at accelerating video-based applications. This approach allowed me to develop and test high performance hardware accelerators that strongly overcome the performances of the actual state-of-the-art implementations. The thesis is organized in four main chapters. Chapter 2 starts with a brief introduction about the story of digital image processing. The main content of this chapter is the description of space missions in which digital image processing has a key role. A major effort has been spent on the missions in which my research activity has a substantial impact. In particular, for these missions, this chapter deeply analizes and evaluates the state-of-the-art approaches and algorithms. Chapter 3 analyzes and compares the two technologies used to implement high performances hardware accelerators, i.e., Application Specific Integrated Circuits (ASICs) and Field Programmable Gate Arrays (FPGAs). Thanks to this information the reader may understand the main reasons behind the decision of space agencies to exploit FPGAs instead of ASICs for high-performance hardware accelerators in space missions, even if FPGAs are more sensible to Single Event Upsets (i.e., transient error induced on hardware component by alpha particles and solar radiation in space). Moreover, this chapter deeply describes the three available space-grade FPGA technologies (i.e., One-time Programmable, Flash-based, and SRAM-based), and the main fault-mitigation techniques against SEUs that are mandatory for employing space-grade FPGAs in actual missions. Chapter 4 describes one of the main contribution of my research work: a library of high-performance hardware accelerators for image processing in space applications. The basic idea behind this library is to offer to designers a set of validated hardware components able to strongly speed up the basic image processing operations commonly used in an image processing chain. In other words, these components can be directly used as elementary building blocks to easily create a complex image processing system, without wasting time in the debug and validation phase. This library groups the proposed hardware accelerators in IP-core families. The components contained in a same family share the same provided functionality and input/output interface. This harmonization in the I/O interface enables to substitute, inside a complex image processing system, components of the same family without requiring modifications to the system communication infrastructure. In addition to the analysis of the internal architecture of the proposed components, another important aspect of this chapter is the methodology used to develop, verify and validate the proposed high performance image processing hardware accelerators. This methodology involves the usage of different programming and hardware description languages in order to support the designer from the algorithm modelling up to the hardware implementation and validation. Chapter 5 presents the proposed complex image processing systems. In particular, it exploits a set of actual case studies, associated with the most recent space agency needs, to show how the hardware accelerator components can be assembled to build a complex image processing system. In addition to the hardware accelerators contained in the library, the described complex system embeds innovative ad-hoc hardware components and software routines able to provide high performance and self-adaptable image processing functionalities. To prove the benefits of the proposed methodology, each case study is concluded with a comparison with the current state-of-the-art implementations, highlighting the benefits in terms of performances and self-adaptability to the environmental conditions
    • …
    corecore