3,630 research outputs found

    Semantic 3D Occupancy Mapping through Efficient High Order CRFs

    Full text link
    Semantic 3D mapping can be used for many applications such as robot navigation and virtual interaction. In recent years, there has been great progress in semantic segmentation and geometric 3D mapping. However, it is still challenging to combine these two tasks for accurate and large-scale semantic mapping from images. In the paper, we propose an incremental and (near) real-time semantic mapping system. A 3D scrolling occupancy grid map is built to represent the world, which is memory and computationally efficient and bounded for large scale environments. We utilize the CNN segmentation as prior prediction and further optimize 3D grid labels through a novel CRF model. Superpixels are utilized to enforce smoothness and form robust P N high order potential. An efficient mean field inference is developed for the graph optimization. We evaluate our system on the KITTI dataset and improve the segmentation accuracy by 10% over existing systems.Comment: IROS 201

    Learning and tuning fuzzy logic controllers through reinforcements

    Get PDF
    A new method for learning and tuning a fuzzy logic controller based on reinforcements from a dynamic system is presented. In particular, our Generalized Approximate Reasoning-based Intelligent Control (GARIC) architecture: (1) learns and tunes a fuzzy logic controller even when only weak reinforcements, such as a binary failure signal, is available; (2) introduces a new conjunction operator in computing the rule strengths of fuzzy control rules; (3) introduces a new localized mean of maximum (LMOM) method in combining the conclusions of several firing control rules; and (4) learns to produce real-valued control actions. Learning is achieved by integrating fuzzy inference into a feedforward network, which can then adaptively improve performance by using gradient descent methods. We extend the AHC algorithm of Barto, Sutton, and Anderson to include the prior control knowledge of human operators. The GARIC architecture is applied to a cart-pole balancing system and has demonstrated significant improvements in terms of the speed of learning and robustness to changes in the dynamic system's parameters over previous schemes for cart-pole balancing

    Evolutionary Algorithms for Reinforcement Learning

    Full text link
    There are two distinct approaches to solving reinforcement learning problems, namely, searching in value function space and searching in policy space. Temporal difference methods and evolutionary algorithms are well-known examples of these approaches. Kaelbling, Littman and Moore recently provided an informative survey of temporal difference methods. This article focuses on the application of evolutionary algorithms to the reinforcement learning problem, emphasizing alternative policy representations, credit assignment methods, and problem-specific genetic operators. Strengths and weaknesses of the evolutionary approach to reinforcement learning are presented, along with a survey of representative applications

    Data-Driven Passivity-Based Control of Underactuated Robotic Systems

    Get PDF
    Classical control strategies for robotic systems are based on the idea that feedback control can be used to override the natural dynamics of the machines. Passivity-based control (Pbc) is a branch of nonlinear control theory that follows a similar approach, where the natural dynamics is modified based on the overall energy of the system. This method involves transforming a nonlinear control system, through a suitable control input, into another fictitious system that has desirable stability characteristics. The majority of Pbc techniques require the discovery of a reasonable storage function, which acts as a Lyapunov function candidate that can be used to certify stability. There are several challenges in the design of a suitable storage function, including: 1) what a reasonable choice for the function is for a given control system, and 2) the control synthesis requires a closed-form solution to a set of nonlinear partial differential equations. The latter is in general difficult to overcome, especially for systems with high degrees of freedom, limiting the applicability of Pbc techniques. A machine learning framework that automatically determines the storage function for underactuated robotic systems is introduced in this dissertation. This framework combines the expressive power of neural networks with the systematic methods of the Pbc paradigm, bridging the gap between controllers derived from learning algorithms and nonlinear control theory. A series of experiments demonstrates the efficacy and applicability of this framework for a family of underactuated robots

    Verifiable Reinforcement Learning via Policy Extraction

    Full text link
    While deep reinforcement learning has successfully solved many challenging control tasks, its real-world applicability has been limited by the inability to ensure the safety of learned policies. We propose an approach to verifiable reinforcement learning by training decision tree policies, which can represent complex policies (since they are nonparametric), yet can be efficiently verified using existing techniques (since they are highly structured). The challenge is that decision tree policies are difficult to train. We propose VIPER, an algorithm that combines ideas from model compression and imitation learning to learn decision tree policies guided by a DNN policy (called the oracle) and its Q-function, and show that it substantially outperforms two baselines. We use VIPER to (i) learn a provably robust decision tree policy for a variant of Atari Pong with a symbolic state space, (ii) learn a decision tree policy for a toy game based on Pong that provably never loses, and (iii) learn a provably stable decision tree policy for cart-pole. In each case, the decision tree policy achieves performance equal to that of the original DNN policy
    corecore