18 research outputs found

    Structural changes after videogame practice related to a brain network associated with intelligence

    Get PDF
    Here gray and white matter changes after four weeks of videogame practice were analyzed using optimized voxel-based morphometry (VBM), cortical surface and cortical thickness indices, and white matter integrity computed from several projection, commissural, and association tracts relevant to cognition. Beginning with a sample of one hundred young females, twenty right handed participants were recruited for the study and assigned to a practice or a control group carefully matched by their general cognitive ability scores. After the first scan, the practice group played ‘Professor Layton and The Pandora's Box’ 4 h per week during four weeks. A second scan was obtained at the end of practice and intelligence was measured again. Image analyses revealed gray and white matter changes in the practice group. Gray matter changes theoretically relevant for intelligence were observed for the practice group mainly in frontal clusters (Brodmann areas 9 and 10) and also in smaller parietal and temporal regions. White matter findings were focused in the hippocampal cingulum and the inferior longitudinal fasciculus. These gray and white matter changes presumably induced by practice did not interact with intelligence tests' scores

    Comparing unilateral and bilateral upper limb training: The ULTRA-stroke program design

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>About 80% of all stroke survivors have an upper limb paresis immediately after stroke, only about a third of whom (30 to 40%) regain some dexterity within six months following conventional treatment programs. Of late, however, two recently developed interventions - constraint-induced movement therapy (CIMT) and bilateral arm training with rhythmic auditory cueing (BATRAC) - have shown promising results in the treatment of upper limb paresis in chronic stroke patients. The ULTRA-stroke (acronym for Upper Limb TRaining After stroke) program was conceived to assess the effectiveness of these interventions in subacute stroke patients and to examine how the observed changes in sensori-motor functioning relate to changes in stroke recovery mechanisms associated with peripheral stiffness, interlimb interactions, and cortical inter- and intrahemispheric networks. The present paper describes the design of this single-blinded randomized clinical trial (RCT), which has recently started and will take several years to complete.</p> <p>Methods/Design</p> <p>Sixty patients with a first ever stroke will be recruited. Patients will be stratified in terms of their remaining motor ability at the distal part of the arm (i.e., wrist and finger movements) and randomized over three intervention groups receiving modified CIMT, modified BATRAC, or an equally intensive (i.e., dose-matched) conventional treatment program for 6 weeks. Primary outcome variable is the score on the Action Research Arm test (ARAT), which will be assessed before, directly after, and 6 weeks after the intervention. During those test sessions all patients will also undergo measurements aimed at investigating the associated recovery mechanisms using haptic robots and magneto-encephalography (MEG).</p> <p>Discussion</p> <p>ULTRA-stroke is a 3-year translational research program which aims (1) to assess the relative effectiveness of the three interventions, on a group level but also as a function of patient characteristics, and (2) to delineate the functional and neurophysiological changes that are induced by those interventions.</p> <p>The outcome on the ARAT together with information about changes in the associated mechanisms will provide a better understanding of how specific therapies influence neurobiological changes, and which post-stroke conditions lend themselves to specific treatments.</p> <p>Trial Registration</p> <p>The ULTRA-stroke program is registered at the Netherlands Trial Register (NTR, <url>http://www.trialregister.nl</url>, number NTR1665).</p

    Neural synchrony within the motor system: what have we learned so far?

    Get PDF
    Synchronization of neural activity is considered essential for information processing in the nervous system. Both local and inter-regional synchronization are omnipresent in different frequency regimes and relate to a variety of behavioral and cognitive functions. Over the years, many studies have sought to elucidate the question how alpha/mu, beta, and gamma synchronization contribute to motor control. Here, we review these studies with the purpose to delineate what they have added to our understanding of the neural control of movement. We highlight important findings regarding oscillations in primary motor cortex, synchronization between cortex and spinal cord, synchronization between cortical regions, as well as abnormal synchronization patterns in a selection of motor dysfunctions. The interpretation of synchronization patterns benefits from combining results of invasive and non-invasive recordings, different data analysis tools, and modeling work. Importantly, although synchronization is deemed to play a vital role, it is not the only mechanism for neural communication. Spike timing and rate coding act together during motor control and should therefore both be accounted for when interpreting movement-related activity

    Oscillatory Cortical Activity in an Animal Model of Dystonia Caused by Cerebellar Dysfunction

    Get PDF
    The synchronization of neuronal activity in the sensorimotor cortices is crucial for motor control and learning. This synchrony can be modulated by upstream activity in the cerebello-cortical network. However, many questions remain over the details of how the cerebral cortex and the cerebellum communicate. Therefore, our aim is to study the contribution of the cerebellum to oscillatory brain activity, in particular in the case of dystonia, a severely disabling motor disease associated with altered sensorimotor coupling. We used a kainic-induced dystonia model to evaluate cerebral cortical oscillatory activity and connectivity during dystonic episodes. We performed microinjections of low doses of kainic acid into the cerebellar vermis in mice and examined activities in somatosensory, motor and parietal cortices. We showed that repeated applications of kainic acid into the cerebellar vermis, for five consecutive days, generate reproducible dystonic motor behavior. No epileptiform activity was recorded on electrocorticogram (ECoG) during the dystonic postures or movements. We investigated the ECoG power spectral density and coherence between motor cortex, somatosensory and parietal cortices before and during dystonic attacks. During the baseline condition, we found a phenomenon of permanent adaptation with a change of baseline locomotor activity coupled to an ECoG gamma band increase in all cortices. In addition, after kainate administration, we observed an increase in muscular activity, but less signs of dystonia together with modulations of the ECoG power spectra with an increase in gamma band in motor, parietal and somatosensory cortices. Moreover, we found reduced coherence in all measured frequency bands between the motor cortex and somatosensory or parietal cortices compared to baseline. In conclusion, examination of cortical oscillatory activities in this animal model of chronic dystonia caused by cerebellar dysfunction reveals a disruption in the coordination of neuronal activity across the cortical sensorimotor/parietal network, which may underlie motor skill deficits

    The neurophysiological changes associated with motor learning in adults and adolescents

    Get PDF
    One main purpose of this dissertation was to explore how sensorimotor cortical oscillations changed after practicing a novel ankle plantarflexion target matching task. We behaviorally quantified the speed, accuracy, reaction time, velocity, and variability of the participant’s performance of the task, while collecting their neurophysiological responses with magnetoencephalography (MEG). With these data, we assessed how the motor planning and execution stages of movement during a goal directed target matching task changed after practicing a task in typically developing young adults with their non-dominant ankle. We found that the cortical oscillations in the beta frequency range that were sourced from the sensorimotor and occipital cortices were weaker after practice. These individuals also improved behaviorally, with faster speed, greater accuracy, higher velocity, and less variability. The decreased strength likely reflects a more refined motor plan, a reduction in neural resources needed to perform the task, and/or an enhancement of the processes that are involved in the visuomotor transformations that occur prior to the onset of the motor action. The second purpose was to explore how the changes of the sensorimotor cortical oscillations after practicing a novel ankle plantarflexion target matching task differ between adults and adolescents. We assessed these behavioral and neurophysiological changes in a cohort of typically developed adults and adolescents. After practice, all of the participants matched more targets, matched the targets faster, had improved accuracy, faster reaction times, and faster force production. However, the motor performance of the adults exceeded what was seen in the adolescents regardless of practice. In conjunction with the behavioral results, the strength of the beta ERD across the motor planning and execution stages was reduced after practice in the sensorimotor cortices of the adolescents, but was stronger in the adults. These outcomes suggest that there are age-dependent changes in the sensorimotor cortical oscillations after practice, which might be related to familiarity with the motor task. The third purpose was to explore how movement attenuates the somatosensory cortical oscillations and how this attenuation differs in adults and adolescents. We used MEG to address this knowledge gap by applying an electrical stimulation to the tibial nerve as adolescents and adults produced an isometric ankle plantarflexion force, or sat quietly with no motor activity. We found movement-related attenuation of the somatosensory oscillations. Attenuation of the alpha-beta ERS while producing the isometric force was greater in adolescents when compared with adults, while the adults had a greater attenuation of the beta ERD. These results imply that alterations of frequency specific somatosensory cortical oscillations may partly underlie the altered motor performance characteristics seen in adolescents

    Learning and physiological stress: Outcomes on expression of related genes in honey bees (Apis mellifera)

    Get PDF
    Stress is defined as any deviation form an organism's baseline physiological levels. As such, introduction of new stimuli and information, such as in learning, can be operationally defined stressors. A large body of research exists examining the role that stress plays in learning, but virtually none addresses whether or not learning itself is a measurable cause of stress. The current work seeks to explore stress in conjunction with learning to determine whether expression of three genes of interest are affected in similar or different fashions by both learning and stress. The current work employs three studies, including aversive conditioning, appetitive conditioning, and naturalistic observation to explore how expression of the candidate genes is altered under a variety of experimental contexts. Gene expression was quantified using reverse-transcriptase quantitative polymerase chain reaction. Results were analyzed using both traditional parametric statistics, and novel non-parametric statistics in Observational Oriented Modeling. Results indicate that stress and learning appear to affect all genes of interest in separate fashions, and do not appear to cause a physiological stress response as a result of learning
    corecore