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The generation and maintenance of locomotion, posture, and balance require the orchestrated 

activations of a plenitude of (skeletal) muscles. The neural activity that accompanies these 

activations involves the central nervous system, i.e., the brain from cortex and cerebellum to 

the brainstem and the spinal cord, as well as the peripheral nervous system. A long-standing 

aim of motor control research is to identify the mechanisms that underlie the tuning of muscle 

group activations which let us perform movements with seeming ease. Pinpointing such 

mechanisms comes with conceptual challenges. An arguably naive idea is that the nervous 

system directly recruits and controls individual motor units. Their sheer number, however, 

will make this a combinatorial contest that is hard to settle, even for the tremendous 

computation power of a human brain. One must realise that our musculoskeletal system 

contains a plethora of redundant degrees of freedom: The same behavioural goal might be 

achieved by a variety of muscle combinations (Bernstein, 1967), rendering individual motor 

unit control ambiguous. It seems more likely that our nervous system ‘simplifies’ motor 

control by steering multiple muscles in unison. Controlling groups of muscles rather than 

individual motor units yields a tremendous reduction of the degrees of freedom and thus 

allows for efficient motor control (Giszter et al., 1993; Grillner, 2011; Sherrington, 1952; 

Tresch et al., 1999).  

The idea of controlling multiple muscles in unison is not new. In the 19th century, 

propriospinal reflexes were considered essential for the generation of muscular activation 

patterns. Already then several neurophysiological experiments revealed that mammals can 

generate alternating and/or cyclic flexor-extensor movements even when their spinal cord is 

transected, i.e., in the absence of descending input from brain and brainstem (Freusberg, 

1874; Goltz, 1869). Put differently, muscle activations can be performed via mere 

propriospinal circuitries. It was also shown that spinal reflexes can establish cyclic and 

sequential performances, and are even specific for distinct parts of a cycle like stance and 

swing phases in walking (Freusberg, 1874).  

In the early 20th century, the view of “spinal reflexes” received further experimental 

support. In a set of experiments Thomas Brown (Brown, 1911, 1914) cut the sensory nerve 

roots close to the proximity of the spinal cord and showed that spinal guinea pigs and cats 

can generate rhythmic locomotor movements without supra-spinal and sensory influences. 

He concluded that the spinal cord must contain an “autonomous factor” that is able to operate 

without supra-spinal and sensory input. Interestingly, Brown’s findings disagreed with those 
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1of his mentor, Charles Sherrington. In 1910, Sherrington suggested that locomotor behaviour 

may only be maintained in the presence of sensory feedback, especially the proprioceptive 

reflex. Brown’s conceptual advance appears very similar to what Wilson & Wyman (1965) 

later coined central pattern generators (CPGs).  

In the second half of last century, a large body of research examined the existence 

and functioning of motor CPGs in vertebrates and invertebrates. The (by now) traditional 

CPG model considers two separated half centres that reciprocally produce flexor and 

extensor movements of a limb (Jankowska et al., 1967a, 1967b). In the 1970s and 1980s, 

Sten Grillner took this concept several steps further in a set of seminal experiments that shed 

light on the neural architecture of the spinal networks in cats, lampreys, and dogfishes 

(Grillner, 1974, 1985). His study on decerebrated cats showed their capacity to generate well-

coordinated locomotor patterns (Grillner & Zangger, 1979). While earlier ideas were mainly 

based on behavioural observations – e.g., the cinematographic recordings (Brown, 1914) – 

this time neuromuscular patterns were registered using electromyography (EMG) (Grillner 

& Zangger, 1979). EMG may be considered as a proxy of a-motoneuron activity at the spinal 

level.  

Nowadays, it is generally accepted that mammal CPGs govern rhythmic movement 

activity at the spinal cord (Grillner, 2006; Guertin, 2009). This includes extensions of the 

two separated half centres CPGs to multi-layered versions that incorporate sensory pathways 

and multiple spinal layers comprising premotor interneurons and a-motoneurons (McCrea 

& Rybak, 2008). Pinpointing this in primates remains challenging but conceptual, 

technological and methodological advances such as computational modelling or via genetic, 

behavioural, neuropharmacological, neuroanatomical and electrophysiological studies do 

allow for addressing CPGs even in humans (d'Avella et al., 2003; Dominici et al., 2011; Hart 

& Giszter, 2010; Kutch & Valero-Cuevas, 2012; Lemay & Grill, 2004; Mussa-Ivaldi et al., 

1994; Pinto & Golubitsky, 2006; Saltiel et al., 2001). While most of the findings in 

invertebrate and lower vertebrate studies suggest that the motor cortex does not have to be 

involved in the generation and maintenance of locomotion, posture, and balance, this is 

different in humans (Capaday, 2002; Nielsen, 2003). In fact, the motor cortex appears to be 

an essential neural structure in humans (Yang & Gorassini, 2006). In the absence of an 

adequate neural interplay between cortical motor networks, other supra-spinal areas and the 

spinal cord most, if not all, motor tasks will not be completed appropriately; spinal cord 
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injury patients clearly demonstrate this (Wagner et al., 2018). Even with spinal cord 

stimulations, muscular covariances in spinal cord injury patients differ from those in healthy 

controls (Cheng et al., 2019). 

Humans accomplish cyclic movements by integrating supra-spinal structures 

including the motor cortex (Grillner & El Manira, 2020; Kiehn, 2006). In line with 

Bernstein’s (1967) ideas, the motor cortex is unlikely to have a one-to-one projection to 

spinal motoneurons and muscles (Cheney & Fetz, 1985; Graziano, 2006). The reduction of 

redundancy calls for ‘clever’ solutions. One may speculate that the motor cortex itself utilises 

modular principles similar to spinal circuitries (Overduin et al., 2015; Overduin et al., 2012). 

However, the motor control related organisation of the motor cortex is still not fully 

understood. State of the art is to study neural ‘coupling’ at the two sides of the cortico-spinal 

tract by comparing signals recorded from the cortex and from the muscle(s). Most of the 

studies build on covariance analysis and address either ongoing and/or voluntary activity or 

responses to peripheral and/or transcranial stimulation (Petersen et al., 2001; Petersen et al., 

2012; Roeder et al., 2018). In particular, coherence, as the frequency-based counterpart of 

correlation, has provided many insights into the functioning of cortico-muscular pathways 

(Conway et al., 1995). However, the vast majority of experimental paradigms have been 

limited to (1) single muscle assessments and (2) voluntary dexterous tasks (van Wijk et al., 

2012b). With my thesis, I sought to shed light on the potentially modular organisation of the 

motor cortex and spinal cord in more complicated motor tasks. There, cortico-spinal 

connectivity assessments must be extended to the multivariate domain (Pirondini et al., 2017; 

Reyes et al., 2017; Yokoyama et al., 2019). As I will show in the chapters to come this, and 

other extensions, enabled me to examine cortical contributions to multiple muscles, 

eventually specifying the coupling between the motor cortex and muscle synergies. 

 

The neurophysiology of the electro-encephalography and electromyography  

Electro-encephalography (EEG) and EMG allow for recording neurophysiological activity 

in the cerebral cortex and in motoneuron pools, respectively (Figure 1.1).  

Signals recorded by EEG primarily reflect electric potentials of populations of post-

synaptic neurons in superficial layers of the cortex. Neurons communicate with each other 

by transmitting action potentials through synapses. When an action potential of a pre-
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1synaptic neuron arrives at the synapse that is connected to a post-synaptic neuron, 

neurotransmitters are released towards the latter. If sufficient action potentials arrive within 

a finite time span, an action potential may be elicited at the post-synaptic neuron. Action 

potentials themselves are biphasic, and they are present only for a fairly short period that 

does not exceed more than a few milliseconds, rendering them difficult to record from a 

distance. However, neurotransmitters at the cell membrane of the post-synaptic neuron cause 

monophasic current flows that change the potential of the post-synaptic neuron’s soma over 

a relatively long time (Hodgkin, 1951). If these post-synaptic potentials add up over many 

populations, EEG can pick up their sum (Baillet et al., 2001). As said, EEG is sensitive to 

electric potential changes in superficial layers. This is not only because the corresponding 

neurons are the closest to the EEG electrodes. Layers IV and V contain long dendritic trees 

and especially those of pyramidal cells are spatially aligned towards the surface of the cortex. 

That is, EEG is particularly sensitive to neural activity of populations of pyramidal cells in 

cortical gyri (Figure 1.1).  

The brain activity measured with EEG is characterised by oscillatory components. 

They are the result of recurrent discharges of neuronal populations (Pfurtscheller & Da Silva, 

1999). Brain rhythms are considered functionally relevant because they may facilitate neural 

communication. Both frequency and spatial origin/extent of the rhythms are function specific 

(Fell & Axmacher, 2011; Fries, 2005). Throughout this thesis, I focused on beta- (13-30 Hz) 

and Piper-rhythms (~40 Hz). Oscillations at these frequencies are known to be prevalent in 

the motor system and are associated with stable motor outflow and multi-sensory binding, 

respectively (Fries, 2005; van Wijk et al., 2012b). Phase locking between cortico-muscular 

beta oscillations generally emerges during steady-state force tasks (e.g., pinch-grip) that 

require a weak muscle contraction (Van Wijk et al., 2012a). The beta rhythm disappears 

when either the movement is initiated or the muscular contraction becomes stronger and 

phase locking between oscillations appears at higher frequencies instead, such as the Piper 

band (Brown et al., 1998).  
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Figure 1.1 – Neurophysiological principles of non-invasive electro-encephalographic (EEG) and 
electromyographic (EMG) recordings. The primary motor cortex (M1) projects down to the 
(lumbosacral) spinal cord along the internal capsule, medulla and cortico-spinal tract (the first two 
structures are not depicted). Population of pyramidal cells are spatially aligned in cortical layers 
IV and V. Activity generated by neural ensembles within these layers is mostly picked up outside the 
scalp during EEG recordings. In the spinal cord, populations of a-motoneurons project to skeletal 
muscles. Action potentials arrive at the skeletal muscle and spread to the cutaneous EMG 
electrodes. Sensory pathways project back to the dorsal part of the spinal cord and primary sensory 
cortex (S1).  

 

In the studies summarised in this thesis, I employed surface EMG extensively. In a 

nutshell, a muscle is innervated by hundreds of a-motoneurons that are located at the ventral 

horn of the spinal cord (Figure 1.1). Their axons project and transport the action potentials 

from the spinal cord to neuromuscular junctions. These action potentials yield muscle fibre 

contractions resulting in muscular force. Like EEG, surface EMG is also recorded from a 

distance, i.e., on the skin. Hence, it picks up the electric potential changes of many motor 

units that are active simultaneously. 
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1Analysis techniques 

EEG and EMG recordings form a solid base to estimate links between the motor cortex and 

muscle synergies. In my thesis, I quantified these links by combining two well-established 

approaches: muscle synergy and cortico-muscular coherence analyses. I will briefly outline 

both of them in the following paragraphs.  

 

Muscle synergies. Thus far, I introduced spinal modularity in terms of CPGs that are 

classically considered as small-scale neural circuitries. Alternatively, one may approach 

spinal modularity from the perspective of the end-effectors, whereby the (co-)activated 

muscles are grouped into (functionally relevant) muscle synergies. Before continuing with 

the latter, I would like to add a statement of warning: while CPGs and muscle synergies share 

conceptual similarities and are potentially complementary, the concepts and terms should 

not be used interchangeably (Bizzi et al., 2008; Grillner, 1985). One reason for this is that 

CPGs are usually referred to as units that can function without external input (Rybak et al., 

2006), whereas muscle synergies do rely on supra-spinal and sensory input. 

Muscle synergies describe low-dimensional entities that are accommodated in the 

spinal cord (Bizzi & Cheung, 2013; d'Avella et al., 2003). A muscle synergy is typically 

viewed as a spatial module that specifies a group of simultaneously active muscles that 

display a common temporal activation pattern. Once muscle synergies are recruited, they 

orchestrate the activity of muscle groups through the corresponding a-motoneurons. In 

monkeys, the linear combination of muscle synergies has been shown to be an adequate 

model of the generative capacity of the premotor inter-neuronal populations (Takei et al., 

2017; Takei & Seki, 2010). In turn, when using EMG, linear decompositions via statistical 

analyses may serve to disentangle muscle synergies. In my studies, I mostly used the low-

frequency envelopes (<10 Hz) of several EMG profiles and combined them in a multivariate 

signal. This signal was decomposed into a few sets of weights, each representing a synergy 

and specifying the strengths with which the individual muscles participate in the synergy, 

together with the corresponding temporal activation patterns (Figure 1.2). I accomplished 

this via non-negative matrix factorization (NNMF) to estimate the muscle synergies (Lee & 

Seung, 1999), which is formally defined as: 
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 𝐸𝑀𝐺(𝑡)	 =)𝑃!(𝑡) ∙ 𝑊!

"

!#$

+ 𝜖	 ≈)𝑃!(𝑡) ∙ 𝑊!

"

!#$

 (1.1) 

with 𝐸𝑀𝐺 (dimensions: time	 × 	muscles) being the multivariate set of EMG envelopes and 

𝑃! (time × 	synergies) and 𝑊! (synergies	 × 	muscles) the temporal activation and the set 

weights of synergy 𝑠, respectively, and an residual error, 𝜖 (Cheung & Tresch, 2006). This 

linear decomposition 𝐸𝑀𝐺 ⟼ 𝑃"𝑊" includes the constraint that both 𝑃" and 𝑊" are positive 

semi-definite, and 𝑃" and 𝑊" have rank 𝑆. Conventional NNMF approaches solve the 

minimisation of the Frobenius norm ‖𝐸𝑀𝐺	 − 𝑃"𝑊"‖#. 

 

 
Figure 1.2 – Overview of the muscle synergy computation from the muscular activation patterns. 
Muscular activation patterns of muscles EMG1-EMG6 (black waveforms) represent envelope 
EMGs as a function of the gait cycle. Through multivariate analysis techniques, here represented 
by the horizontal arrow, the patterns of EMG1-EMG6 are decomposed into muscle weights (W1-
W2) and basic activation patterns (P1-P2).  

 

Over the last two decades, muscle synergy analysis has been widely employed to 

assess spinal modularity during various motor control tasks (d'Avella et al., 2003; Dominici 

et al., 2011; Ivanenko et al., 2004; Kutch & Valero-Cuevas, 2012; Overduin et al., 2015; 

Saltiel et al., 2001; Sylos-Labini et al., 2020; Takei et al., 2017). These and many other 

studies allowed for inferences of spinal cord functioning based on relatively ‘simple’ 

experimental assessments, namely conventional albeit multivariate EMG. One has to keep 

in mind, though, that both conceptual (e.g., synergy’s existence, encodement, activation, 

organisation) and computational (linearity, factorisation methods, error distribution, and 

other model assumptions) aspects of this analysis are still under debate (Cheung & Seki, 

2021).  
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1Important for my thesis is that muscle synergy analysis alone falls short in 

pinpointing the neural origin of synergy formation. This is certainly true when allowing the 

cortex with (all) its brain rhythms to participate in this formation. In my thesis, I focused on 

the beta- and Piper-rhythm for which I had to ensure that the estimated synergy activation 

patterns cover these frequency ranges rather than being limited to low-frequency envelope 

dynamics. For this, I estimated synergies via the traditional envelope approach and used the 

resulting weights together with the original EMG signals (including their high-frequency 

components) to define “virtual activation patterns”. 

 

Cortico-muscular coupling by means of coherence. As indicated above, I employed 

coherence as a functional connectivity measure between EEG and EMG (Figure 1.3A-B). 

Coherence is a measure of phase locking as a function of frequency. Put differently, it 

quantifies the consistency of the relative phase between two time series. It yields values 

between 0 and 1, where 1 implies a perfect linear association. More formally, it reads 

 

 𝐶%&(𝜔) =
2〈2𝑆%(𝜔)𝑆&(𝜔)2𝑒'()!(*),)"(*))〉2

-

〈|𝑆%(𝜔)|-〉 〈2𝑆&(𝜔)2
-〉

 (1.2) 

 

where 𝐶$% denotes the magnitude-squared coherence between signal 𝑥 and 𝑦, 𝑆$ and 𝑆% are 

the Fourier transforms at frequency ω, ϕx and ϕy are the corresponding Fourier phases, and 

〈∙〉 represents the expectation value which can be estimated over consecutive recordings, 

trials and/or epochs. If one randomises the phases of one of the signals, coherence disappears, 

even though the power is identical to the non-randomised version (Figure 1.3B-C). 

Coherence analysis can facilitate inferences on the fast-pyramidal monosynaptic 

pathways from the motor cortex to the spinal cord (Ibanez et al., 2021). Yet, this phase-

locking estimate does not encompass all neural interactions in the central nervous system as 

it subsumes that both signals/activities are compared for their phases at a single frequency 

ω, while locking between phases at different frequencies remains opaque. As a matter of 

fact, many recent studies indicated the relevance of cross-frequency coupling (Aru et al., 

2015; Canolty et al., 2006; Jensen & Colgin, 2007). Therefore, I also devoted a study to 
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advance the method of coherence to quantify cross-frequency interactions. The so-called 

bicoherence allows for the estimation of the relationships between the 20- and 40-Hz 

frequencies of the beta- and Piper-rhythms. I will return to this prospective application in the 

Epilogue of my thesis.  

 

 
Figure 1.3 – Overview of coherence estimation. (A) Time series of example EEG and EMG data. 
Both time series were transformed to the frequency domain using fast Fourier transforms and a 
windowed segmentation approach. (B) Coherence can be computed after estimating the cross and 
power spectra. The coherence spectrum between the EEG and EMG data reveals a clear 40-Hz 
component. (C) This coherence at 40 Hz disappears after randomising the phases of the EEG signal 
between 30 and 50 Hz, showing that coherence captures the consistency of the relative phase. EEG 
power is unaffected by this phase randomisation.  
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1Inverse and forward modelling. Since EEG measures brain activity outside the scalp, it 

suffers from the inverse problem (Figure 1.4A): one cannot assign a unique set of sources in 

the volume given a recording at the surface. Source reconstruction methods are meant to 

provide approximate solutions for this, first and foremost by imposing biophysical 

constraints combined with statistical ‘constraints’ and subsequent hypothesis testing. 

 

 
Figure 1.4 – Brain researchers conducting non-invasive electrophysiological recordings face the 
inverse problem (i.e., measuring EEG signals outside the scalp without knowing the origin in the 
brain). (A) In this illustrative example, the activity is measured outside the scalp by means of two 
sensors. This surface-based neural activity can originate from the four sources within the brain without 
knowing if and how each of these sources contributes to the two sensors. (B) To solve this, one must 
estimate a forward model, describing how potential neural activity at one of the sources spreads to the 
sensors. By applying this forward model, one can find a solution to the inverse problem and pinpoint 
the neural origin of the sensor-level activity. This solution is unique; however, one has to make several 
assumptions on biophysical and geometrical properties. (C) This is achieved by multiplying the sensor-
level time series with a set of spatial weights using the inverse of the forward model. After a statistically 
significant source has been identified, source-level time series can be reconstructed.  
 

The starting point for this is a forward model (cf. Figure 1.4B) which – given the 

recording from a distance – can be simplified by defining a lead field, i.e., a linear mapping 

from possible neural sources to the recording points. The spatial extent of the corresponding 

lead-field matrix is given by anatomical constraints and its entries by biophysical properties 

like tissue conductivity (Vorwerk et al., 2018). Defining the lead field can be laborious but 

is greatly facilitated by open-source software toolboxes like SPM, FieldTrip, FreeSurfer, 

FSL, etc.). In my thesis, I segmented structural MRIs into five tissue types, namely, the skin 

(scalp) and bone (skull) as well as grey and white matter and the cerebrospinal fluid 
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(Vorwerk et al., 2014) via finite element modelling. The entries of the lead field were defined 

accordingly and subsequently inverted by means of Penrose’s pseudo-inverse (the rank of 

the lead-field matrix is bounded by the number of EEG electrodes whilst its dimension may 

be as high as the number of voxels in the brain volume of the structural MRI). 

There are two statistical ‘constraints’ to consider. First, I used Dynamic Imaging of 

Coherent Sources (DICS) beamforming (Gross et al., 2001) to define what is often referred 

to as spatial filters (Figure 1.4C). Formally, these spatial filter weights 𝑊 can be computed 

as follows: 

 

 𝑊(𝑟, 𝜔) = :𝐿.(𝑟)𝐶(𝜔),$𝐿(𝑟)<
,$
𝐿.(𝑟)𝐶(𝜔),$ (1.3) 

 

with 𝐶(𝜔) being the cross-spectral density matrix at frequency 𝜔, which has dimensions 

equal to the number of EEG channels. 𝐿(𝑟) denotes the lead-field matrix at location 𝑟 in 

three dimensions. This vector notation can be changed to a scalar case by finding the largest 

singular value. DICS beamforming then is a mere singular value decomposition assuming 

every possible source at locations of the lead field to comprise a unit dipole. It is expressed 

in the frequency domain, which renders it particularly efficient when concentrating on 

distinct frequency bands (in my case the beta- and Piper-rhythms). The resulting singular 

values provide an estimate of the power or likelihood of every possible source location to 

contribute to the observed EEG. When combined with the aforementioned lead-field matrix 

inversion, one can estimate the activity at the source. With my focus on cortico-synergy 

coherence, I optimised the coherence between the EEG and the “virtual activation patterns” 

of the muscle synergies via the DICS approach. Second, the power/likelihood of a source 

can be further pinpointed by estimating its statistical significance using contrasts between 

groups, conditions, or time windows of performance as outlined below.  

 

Hypothesis testing. The statistical assessment of source activities comes with two major 

challenges. (1) Activity distributions can – in general – not be assumed to be Gaussian and 

(2) the number of potential sources is large causing a multiple comparison problem. I 

therefore employed cluster-based permutation testing (Maris & Oostenveld, 2007). In brief, 
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1one first clusters the sources via the covariance using a Monte-Carlo approach (i.e., via 

random drawing given the large number of voxels encountered) and then estimates a 

bootstrap distribution of the activities where surrogates are built via random permutations of 

the clusters.  

Employing permutation tests is particularly useful when seeking for statistical 

effects between several conditions (e.g., a contrast of baseline and active conditions). 

Example data of two conditions are given in Figure 1.5A-C. There, the null hypothesis that 

both datasets are drawn from the same probability distribution can be falsified via a certain 

test statistic (e.g., t- or F-values, Figure 1.5D). As said, data are subjected to random 

clustering or partitioning, which assigns all data samples (subjects or conditions) to one of 

the available conditions at random. The test statistic is computed from these shuffled data 

yielding a permutation distribution (a special form of a bootstrap distribution). After 

sufficiently many partitions, statistical inferences can be made based on whether p-values 

surpass a given significance threshold. This threshold is defined based on clusters (Figure 

1.5E-F). 

 

 
Figure 1.5 – An illustrative example of cluster-based permutation testing. (A-C) Two datasets 
exhibiting coherence are simulated. Both datasets show significant coherence around 30 Hz and 
dataset 2 also contains coherence at 15 Hz in the time window of 0-2 seconds. This also appears in the 
coherence differences. (D-F) Cluster-based permutation testing using an independent t-test reveals 
negative t-values at this window. These data samples get clustered into one negative cluster, which 
turns out to be significant. The summed test statistic of this negative cluster exceeds the critical cluster 
threshold as determined from the permutation distribution that corresponds to the predefined a-level 
of 0.025. This allows us to reject the null hypothesis that coherence datasets 1 and 2 are drawn from 
the same probability distribution.  
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Research questions 

It should now be clear that deciphering the neural basis of fundamental spinal patterns and 

muscle synergies is not trivial. I tackled this by correlating (estimated) activities in the cortex 

with (estimated) activities of synergies. My overarching research question was: 

 

How does the motor cortex interact with muscle synergies? 

 

This question appears quite broad. Hence, I used a set of distinct motor control 

experiments to provide an answer to it that is not limited to a single paradigm. That is, I used 

a variety of electrophysiological data obtained in different experiments to investigate the 

functional connectivity along cortico-synergy pathways in different motor tasks. All of the 

settings came with their own, more specific, research questions:  

 

Q1. How does the motor cortex contribute to muscle synergies during the generation 

and maintenance of locomotion, posture, and balance?  

Q2. How do the locomotor muscle synergies and their interaction with the motor 

cortex develop? Specifically, does the interaction differ between toddlers and 

adults?  

Q3. How can we assess the functional connectivity across different frequencies?  

 

Outline of the thesis 

In the study summarised in Chapter 2, I introduced an analysis method coined cortico-

synergy coherence. As will be shown, this method allowed for estimating long-distance 

phase synchronisation between cortical oscillations and lumbosacral activity that contributes 

to balance control in a unipedal stance task. I recorded EEG and EMG in healthy adults to 

answer Q1, for which I expected that the cortical oscillations at the movement-related beta- 

and Piper-bands are manifest in the virtual activation patterns of the muscle synergies.  

Building on the capacity of cortico-synergy coherence to identify phase-locked 

patterns between cortical areas and muscle synergies, I investigated the coupling between 
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1the motor cortex and muscle synergies during locomotion. This study is summarised in 

Chapter 3 and provides an answer to Q1. Walking is ‘more dynamic’ than quiet stance, 

which is reflected in the temporal amplitude modulations of both muscular and synergy 

patterns throughout the gait cycle. I hence expected cortico-synergy coupling to only occur 

at specific phases during the gait cycle. Being specific for the type of cycle phase and cortical 

representation of the concomitant synergy this study provided new insights into the location 

and timing of balance and gait control alike.  

The study underlying Chapter 3 revealed two synergies that exhibit significant 

coherence. They appeared similar to those that emerge in the course of walking development. 

For the report in Chapter 4, I dug deeper into this resemblance via a cross-sectional study 

involving independently walking toddlers and adults. Together with the findings of Chapter 

3 this study served to answer Q2. 

For Chapter 5, I went beyond the linear cross-spectrum and examined the 

relationship between univariate bicoherence (i.e., coherence between three frequencies) and 

coherence-based phase-amplitude coupling; see Q3. The latter defines the coupling between 

the phase at low frequencies and amplitude at higher ones. While the corresponding study 

should primarily be seen as a methodological advance, it comes with great potentials in 

specifying the interaction between gait and balance control that seemingly relies on distinct 

frequency components, oscillatory activity in the beta-frequency band (~20 Hz) vis-à-vis the 

Piper rhythm (~40 Hz). 

In Chapter 6, I reflect on all the findings and how they answer my specific and 

overarching research questions. I also outline the future questions that should be addressed 

to better understand the interaction between cortical areas and muscle synergies. I present 

preliminary results on a longitudinal study into the early cortical development of the muscle 

synergies addressing the emergence of the two synergies and their cortical representations 

highlighted in Chapters 3 and 4. I also follow up on Chapter 5 by illustrating how bicoherence 

can be integrated into the study of cortico-synergy coherence.  
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CHAPTER 2 
 

The human sensorimotor cortex fosters muscle synergies through 

cortico-synergy coherence  
 

In neuromotor control, the dimensionality of complex muscular activation patterns is 

effectively reduced through the emergence of muscle synergies. Muscle synergies are 

tailored to task-specific biomechanical needs. Traditionally, they are considered as low-

dimensional neural output of the spinal cord and as such their coherent cortico-muscular 

pathways have remained underexplored in humans. We investigated whether muscle 

synergies have a higher-order origin, especially, whether they are manifest in the cortical 

motor network. We focused on cortical muscle synergy representations involved in balance 

control and examined changes in cortico-synergy coherence accompanying short-term 

balance training. We acquired electromyography and electro-encephalography and 

reconstructed cortical source activity using adaptive spatial filters. The latter were based on 

three muscle synergies decomposed from the activity of nine unilateral leg muscles using 

non-negative matrix factorization. The corresponding cortico-synergy coherence displayed 

phase-locked activity at the Piper rhythm, i.e., cortico-spinal synchronisation around 40 Hz. 

Our study revealed the presence of muscle synergies in the motor cortex, in particular, in 

the paracentral lobule, known for the representation of lower extremities. We conclude that 

neural oscillations synchronise between the motor cortex and spinal motor neuron pools 

signifying muscle synergies. The corresponding cortico-synergy coherence around the Piper 

rhythm decreases with training-induced balance improvement. 

 

 

 

 

Adapted from: C.S. Zandvoort, J.H. van Dieën, N. Dominici, & A. Daffertshofer (2019). 

The human sensorimotor cortex fosters muscle synergies through cortico-synergy 

coherence. Neuroimage, 199, 30-37. 10.1016/j.neuroimage.2019.05.041 
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Introduction 

Human motor control comes with daunting challenges as even seemingly simple movements 

require well-timed orchestration of a plenitude of muscles. The motor system has abundant 

degrees of freedom (Bernstein, 1967). It is commonly accepted that controlling them 

involves task-specific combinations of muscle activity, which are coined muscle synergies 

(d'Avella et al., 2003; Dominici et al., 2011). Synergies sometimes manifest in small-scale 

neural circuitries in the spinal cord (Lemay & Grill, 2004; Saltiel et al., 2001), although, in 

general, their underlying neural mechanisms remain unclear (Tresch & Jarc, 2009). While 

there are some recent conjectures about muscle synergy representations in the motor cortex 

(Aumann & Prut, 2015; Bizzi & Cheung, 2013; Pirondini et al., 2017), as of yet a thorough 

empirical proof of their existence in humans is still lacking. Signatures of cortical muscle 

synergy representations were shown in the primate brain (Overduin et al., 2015). With the 

current study, we provide support by focusing on coherence between motor cortex 

oscillations and muscle synergies at specific frequency bands. 

Phase locking of neural populations facilitates information transfer between them 

and is apparent in the motor system at various levels. Within the motor network intra- and 

interhemispheric phase locking is especially present in the beta-frequency band (15-30 Hz) 

(Rueda-Delgado et al., 2014; van Wijk et al., 2012b). Long-distance phase locking is also 

visible as cortico-muscular coherence (Baker, 2007; Boonstra et al., 2009). Phase locking is 

believed to reflect entrainment of spinal motoneurons with the cortical motor nuclei (Mima 

& Hallett, 1999b). Coherent discharges, emerging from the summated activity of pyramidal 

neural populations at superficial cortical layers, propagate along the cortico-spinal tract 

(Baker et al., 1999; Witham et al., 2011).  

Muscles within a single muscle synergy may receive coherent neural input. From a 

binding perspective, one may expect that this multi-muscular drive is also reflected in 

cortico-muscular coherence involving multiple muscles. A multi-muscular binding 

hypothesis of the cortico-spinal drive has been investigated earlier (de Vries et al., 2016; 

Reyes et al., 2017), but experimental assessments have been limited to oscillatory behaviour 

of cortico-spinal projections directed to pairs of muscles. Arguably, supra-spinal regions 

send common neural input to multiple muscles belonging to a single muscle synergy (Bizzi 

& Cheung, 2013). In other words, neural pathways project to muscle synergies (Aumann & 
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Prut, 2015), imposing temporal and spatial features of the muscle synergy represented in the 

motor cortex on motor outflow. 

Cortico-spinal entrainment is typically concentrated in the beta- and lower-gamma-

frequency bands. The latter 30-60 Hz band has been labelled the Piper rhythm (Brown, 

2000), to which dynamical tasks like locomotion (Petersen et al., 2012) and manual tasks 

(Mehrkanoon et al., 2014; Omlor et al., 2007) seem instantiated. Its functional role for 

sensorimotor behaviour remains to be elucidated, but this rhythm seems to serve for 

correcting prediction errors (Mehrkanoon et al., 2014). One may hypothesise that practising 

a novel sensorimotor task can modulate neural oscillations along cortico-muscular pathways 

in the Piper rhythm. Motor practice or training may, hence, involve adaptation of cortico-

muscular signalling loops conveying Piper-rhythm oscillations.  

We investigated functional cortico-synergy connectivity and its plasticity in short-

term postural training. We expected Piper-rhythm coherence between motor cortex and 

muscle synergies to be modulated as a function of practice, reflecting its band- and synergy-

specific role in motor control.  

 

Methods 

Participants and experimental paradigm 

Fifteen healthy young adults (11 males and 4 females; mean±SD, age: 24.7±3.1 years; 

weight: 71.1±11.2 kg; height: 179.5±9.5 cm) were recruited by word of mouth. Participants 

were included when between 18 and 35 years old and right legged. Exclusion criteria were: 

(I) injuries in the previous 6 months, (II) self-reported pain or discomfort or any range of 

motion limitation during activities of daily living and exercises, (III) a self-reported history 

of neurological disorders, or (IV) a history of participation in postural practising sports (e.g., 

ballet, yoga, or gymnastics). Participants signed an informed consent prior to performing the 

experiment. The experimental design was approved by the ethical committee of the Faculty 

of Behavioural and Movement Sciences of the Vrije Universiteit Amsterdam (#VCWE-

2016-200). The experiment was conducted in accordance with the Declaration of Helsinki 

for experiments on humans.  
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The study was longitudinal including intra-individual pre-post comparisons 

between two timepoints (Figure 2.1). A single experiment consisted of a total of 20 trials: 10 

pre- and 10 post- postural training. Participants stood unipedally on their preferred right leg 

at the centre of a robotic-controlled balance board, which imposed rotational mechanical 

perturbations. Pre- and post-timepoints were interspersed by a postural training session, in 

which participants practised their unipedal postural control on unstable boards for 30 

minutes.  

Participants were instructed to react adequately to the rotational mechanical 

perturbations by stabilising their centre-of-mass to the pre-perturbation equilibrium. Arms 

were placed along the body; however, participants were allowed to use them if needed to 

maintain balance. Participants did not wear shoes. A trial was considered as invalid when the 

participant stepped off the foot plate of the balance board or grabbed one of the handrails 

next to them to prevent falling. To minimise EEG artefacts, they were asked to fixate their 

gaze at a white cross of 10x10 cm at eye level on a wall at five meters.  

Rotational mechanical perturbations were imposed and controlled externally on the 

axis of the footplate using a HapticMaster (MOOG-FCS B.V., Nieuw-Vennep, The 

Netherlands). We used position-controlled perturbations to manipulate the axis beneath the 

robot-controlled board. The axis had one degree of freedom and only allowed rotation in the 

frontal plane. Perturbations had a sinusoidal time course of either +3° or -3° and were 

imposed at a rate of ±0.8 Hz, equalling an averaged angular velocity of +6°/s or -6°/s. A 

single trial contained 30-40 mechanical perturbations, over a trial duration of 40-55s. 

Consecutive perturbations yielded an inter-perturbation duration variability of 0-250ms. 

Participants had a break of 60s between consecutive trials to prevent fatigue. Prior to the first 

trial, participants performed one familiarisation trial on the balance board.  

In the postural training, participants practised unipedal balancing on two so-called 

wobble boards. These boards varied in height to ensure that the postural task became more 

challenging. While practising on different boards is recommended, standardisation of the 

intensity, duration, and volume of the postural training programs is currently lacking except 

for general guidelines (Lesinski et al., 2015). Conform these guidelines, participants 

performed five unipedal trials of 30s with 30s rest between trials on every wobble board. 

Between the two boards, participants got a rest of 5 minutes to avoid fatigue. 
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Figure 2.1 – Schematic representation of the experimental setup and paradigm. (A) Schematic 
experimental setup from the posterior view. Participants stood on their right leg on the foot plate of 
the robotic-controlled platform which imposed rotational mechanical perturbations. (B) Both ‘Pre-
timepoint’ and ‘Post-timepoint’ consisted of ten trials on the platform. Single trials contained a pre-
determined number of mechanical perturbations ranging between 30-40. A total of 330 perturbations 
was imposed at both timepoints. ‘Pre-timepoint’ and ‘Post-timepoint’ plots show board angle 
modulation as a function of time and trial number. Coloured graphs in these representations indicate 
different trials. The two timepoints were intermitted by a postural training session. Training effects 
were investigated by comparing the average of ten trials and all participants per timepoint. (C) Grand 
average rectified time-locked angle of the robotic-controlled balance platform pooled over 
perturbations, trials, timepoints, and participants. Time 0s indicates the perturbation onset. 

 

Data acquisition 

Electro-encephalography (EEG), multivariate electromyography (EMG), and kinematics 

data were acquired at pre- and post-training timepoints. Sampling of EEG, EMG, and 

kinematic signals was synchronised.  

Participants wore a 64-electrode EEG cap (TMSi, Twente, The Netherlands). The 

EEG cap was placed according to the international 10-20 standard. Impedance gel (SonoGel, 

Bad Camberg, Germany) was injected to keep impedances between the skin and electrodes 

below 10 kΩ. Every channel was recorded and 24-bits analogue-to-digital converted at a rate 

of 2,048 Hz by a TMSi Refa 128-channel amplifier (TMSi, Twente, The Netherlands).  
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Ag/AgCl surface electrode pairs (Medicotest, Ambu® Blue Sensor®, type: N-00-

S/25) were anatomically placed according to the SENIAM conventions (Hermens et al., 

2000). The inter-electrode distance was set at 20 mm. Surface EMG of the right tibialis 

anterior (TA), peroneus longus (PN), gastrocnemius medialis (GM), soleus (SO), rectus 

femoris (RF), vastus lateralis (VL), biceps femoris (BF), adductor longus (AL), and gluteus 

medius (GL) was measured at a rate of 2,048 Hz. EMG was measured using driven-shielded 

wires, which minimise the potential effects of movements (e.g., cable sways). To reduce the 

residual effects of cable sways, cables were attached to the skin with adhesive tape. As EEG 

and EMG were acquired with the same 128-channel amplifier (64-channel EEG and 

remaining channels EMG), the ground channel of the EEG was used a reference for the 

unipolar EMG instead of placing reference electrodes. We used an average common 

reference of all EEG- and EMG-channels. 

Kinematics was assessed via a 3D motion capture system (Optotrak, Northern 

Digital, Waterloo, ON, Canada). Three-dimensional positional data of four single LED 

markers were recorded of the hips (posterior superior iliac spine) and shoulders (posterior 

part acromion) bilaterally. Kinematic data were acquired using one camera at a rate of 150 

Hz. Here, these data served to confirm improvements in postural control across the training 

session. 

 

Data analysis 

Pre-processing and artefact removal. All analyses were performed with custom-made 

functions involving the open-source FieldTrip toolbox for MATLAB (Mathworks Inc., 

Natick, USA) (Oostenveld et al., 2011). From the average common reference of the EEG 

and EMG, the EEG was re-referenced to an average common reference and one bipolar EMG 

time series was derived from two monopolar EMG time series. 

EEG and EMG time series were mean centred and band-pass filtered (bidirectional 

second-order Butterworth filter between 5 and 250 Hz). Line noise and its higher harmonics 

were removed using a bidirectional second-order Butterworth band stop filter around 50, 

100, 150, and 200 Hz using a bandwidth of 0.5 Hz). EEG time series were temporarily re-

referenced to channel F7 to detect bad channels. Individual channels were qualified as ‘bad’ 

in case the channel contained a flat line or an excessive mean or standard deviation in terms 
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of amplitude. Exclusion based on amplitude yielded that the single-channel variance 

exceeded 3 times the standard deviation or 10 times the maximum of all channels. On 

average, 0.7 channels (range: 0-5 channels) were removed per trial. ‘Bad’ EEG channels 

were spherically interpolated using spline interpolation as a function of the activity and 

electrode position of the neighbouring channels. After checking bad channels, EEG time 

series were re-referenced to an average common reference.  

Additional artefact detection and removal were performed with independent 

component analysis (ICA). ICA was applied on the EEG time series using FieldTrip toolbox 

functions including an extended fastICA-algorithm with online bias adjustment. Single IC-

modes were excluded if their median frequency was lower than 1 Hz (i.e., movement 

artefacts) or higher than 60 Hz (muscular activity), or if the prefrontal channels were 

topologically dominant (eye movements). Sensor-level EEG was reconstructed after the set 

of artefact-containing IC-modes was discarded. The number of components removed at pre- 

and post-timepoint were 12.51±5.34 and 12.46±5.23 (mean±SD), respectively. Rectified 

EMG signals were obtained from the modulus of the Hilbert transform, since rectifying the 

EMG is believed to provide an accurate representation of the overall oscillatory activity of 

the motor units (Boonstra & Breakspear, 2012). 

 

Muscle synergies. We extracted muscle synergies using non-negative matrix factorization 

(NNMF) of the rectified EMG time series of nine stance leg muscles (TA, PN, GM, SO, RF, 

VL, BF, AL, and GL) (Lee & Seung, 2001). The rectified EMGs of consecutive trials and 

participants were concatenated and normalised to the standard deviation of individual 

muscles. We note that the rectified EMG was not low-pass filtered. Consequently, the 

resulting temporal activation patterns contained higher spectral content. These high-

frequency temporal activation patterns served as input for the subsequent cortico-synergy 

coherence estimates. However, we do provide results on muscle synergies using more 

conventional low-pass filtered EMG as Supplementary material Chapter 2. In brief, findings 

based on low-pass filtered EMG as NNMF-input corroborated the findings obtained with the 

non-filtered EMG (Figures S2.3-S2.6). 

A set of 1-9 muscle synergies was iteratively extracted with NNMF. NNMF was 

constrained to have 50 replicates with 1,000 iterations each and a termination tolerance of 
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10-6 and 10-4 for the change in temporal activation patterns and muscle weightings size and 

residual size, respectively. A-priori criteria to determine the number of required muscle 

synergies were based on the reconstruction accuracy (RA) of the low-pass filtered EMG. RA 

was assessed by the quotient of the Frobenius norm of the error and the Frobenius norm of 

the rectified EMG, where the error was defined as the difference between the rectified EMG 

and the product of the muscle weightings and temporal activation patterns. Overall and 

muscle-specific RA were required to surpass a threshold of 90% (Clark et al., 2009). These 

criteria led to the extraction of three synergies (Figures S2.3 & S2.10). Iterative computation 

of three muscle synergies results in temporal activation patterns that are close to identical 

(correlation coefficient: 0.996±0.006). 

 

Cortical source localisation and reconstruction. Cortical source localisation and 

reconstruction of the muscle synergies were conducted using inverse modelling on the z-

transformed sensor-level EEG using DICS-beamformers (Gross et al., 2001). DICS-

beamformers allow for the anatomically meaningful localisation of cortico-synergy 

coherence between the sensor-level EEG and muscle synergies by considering the cross-

spectral density matrix. We first built a forward model, which was based on a five-layer 

volume conduction model computed from the magnetic resonance imaging template of the 

FieldTrip toolbox (Oostenveld et al., 2011) that was segmented and hexahedrally meshed 

into binary representations of white matter, grey matter, cerebro-spinal fluid (CSF), skull 

tissue, and scalp tissue with a default hexahedron shift parameter of 0.3. Finite element 

modelling using the SIMBIO-software was applied on these geometrical volumes to 

construct the realistically shaped five-shell volume conduction model (Vorwerk et al., 2018). 

For the preparation of the volume conduction model, we used the following conductivity 

values: 0.33 (grey matter), 0.14 (white matter), 1.79 (CSF), 0.01 (skull), and 0.43 (scalp) 

(Birot et al., 2014). The source model consisted of a 3D-dipole grid with 2 mm3 resolution, 

which was geometrically aligned with the brain volume (i.e., CSF, white, and grey matter 

shell) of the volume conduction model. The source model was shifted 15 mm outwards of 

the brain tissue. EEG electrode positions were geometrically aligned to the volume 

conduction model. A lead-field matrix was constructed based on the volume conduction 

model, source model, and 3D-sensor positions. To prevent power bias to the centre of the 

head, the lead field was normalised voxel-by-voxel by the overall power. The cross-spectral 
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density matrix was estimated between the 64 Fourier-transformed EEG and temporal 

activation patterns using multi-taper Slepian sequences with 1s windows. This matrix was 

determined in the frequency range of 1-80 Hz with 40.5 Hz as centre frequency and was 

pooled over consecutive windows within the EEG and EMG signals of every individual trial. 

To localise coherent cortical sources of the muscle synergies, we averaged coherence 

between the sensor-level EEG and muscle synergies over frequency and time. Coherence of 

these cortical sources likely differs from the time-locked cortico-synergy coherence between 

the source-reconstructed cortical activity and muscle synergies reported as a function of time 

and frequency. 

Common spatial filters were estimated comprising sensor-level data of all 

timepoints and participants, excluding that cortico-synergy coherence modulation could be 

assigned to spatial filter variability. Common spatial filters were constrained to being real-

valued and the regularisation parameter of the cross-spectral density matrix was set at 5%. 

Spatial filters were parcellated to the automated anatomical labelling atlas (Tzourio-Mazoyer 

et al., 2002). Given the results of coherence estimates and their corresponding pre-post 

training modulation, the left paracentral lobule was selected as region of interest. For this 

region of interest, source time series were reconstructed by multiplying the spatial filters 

with the sensor-level EEG. To exclude source-localised cortico-synergy coherence to be the 

result of a single voxel including excessive coherence, we averaged over a sphere with a 

10mm radius. For the left paracentral lobule, the corresponding source time courses were 

decomposed by singular value decomposition and the most prominent mode served as EEG 

time series for the cortico-synergy coherence. 

 

Connectivity analysis. EEG and EMG time series containing the 30-40 movement-related 

potentials were time-locked into epochs from -400 to 600ms relative to perturbation onset. 

Coherence was estimated between the source-reconstructed activity and temporal activation 

patterns, establishing cortico-synergy coherence. The temporal activation patterns were the 

direct output of the NNMF. We applied multi-taper frequency convolutions with Slepian 

sequences. We note that wavelet transformations yielded comparable cortico-synergy 

connectivity estimates as the multi-taper frequency convolution (results not shown). Epochs 

were pooled over perturbations, trials, and participants for both timepoints. 
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Kinematics. To verify that postural training effects had taken place, the behavioural 

performance was evaluated by estimating time-to-recovery after the mechanical 

perturbation. Mediolateral sway of the bilateral hip and shoulder markers was time-locked 

to mechanical perturbation onset. Principal components were extracted by decomposing the 

time-locked sway using conventional principal component analysis. To evaluate relaxation 

time, i.e., anticipatory response after mechanical perturbation onset, we determined the auto-

covariance as a function of time lag of the principal component that captured most 

mediolateral excursion. The first auto-covariance decay around time 0s can be used as a 

measure of how quick participants responded to the mechanical perturbation. Here, a steeper 

decay indicates a quicker relaxation to the equilibrium. In line with linear response theory, 

relaxation times were estimated by fitting a first-order exponential function to this most 

central exponential decay of the auto-covariance. The time constants of the exponential 

decay were expected to decrease due to postural training, indicating faster postural recovery 

after the mechanical perturbation. 

 

Statistical analysis 

Cortico-synergy coherence estimates were pooled over perturbations for individual trials, 

equalling 150 representations per timepoint (10 trials ´ 15 participants). Cortico-synergy 

time-frequency coherence representations were compared using cluster-based permutation 

tests with a dependent t-test as test statistic and Timepoint as factor. We applied cluster-based 

permutation tests for two reasons: a cluster-based permutation test does not require a-priori 

assumptions about the probability distribution; these statistical tests are suitable to solve the 

multiple comparisons problem occurring in the statistical comparison of the voxels of the 

time-frequency-representations (Maris & Oostenveld, 2007).  

The permuted distribution was estimated by partitioning the time-frequency 

representations into two data sets containing random samples of the original two time-

frequency-representations. A test statistic was obtained from the permuted distribution after 

every partition. These two steps were repeated for 1,000 partitions. The Monte-Carlo 

distribution of the test statistics was thresholded with a predefined a-level searching for 



 

 35 

2

significant spatial clusters. Probability distributions were thresholded for statistically 

significant clusters using a cluster  a-level of 0.001 and a-level of 0.025 for the t-test. 

 

Results 

Muscle synergies 

The activity of the nine muscles could be decomposed into three correlative temporal 

activation patterns. Synergy 1 comprised temporal activation patterns of the gastrocnemius 

medialis, soleus, and rectus femoris, synergy 2 of the tibialis anterior, peroneus, 

gastrocnemius medialis, adductor longus, and gluteus medius, and synergy 3 of the vastus 

lateralis, biceps femoris, adductor longus, and gluteus medius (Figure 2.2A). After the 

mechanical perturbation, onset at t = 0s, a sequential activation of synergy 2 and synergy 3 

occurred (Figure 2.2B). Synergy 2 was of special interest as it comprised most pronounced 

amplitude modulation following the mechanical perturbation. Synergy 1 was constantly 

active without considerable amplitude modulation. Sequential activation of synergies 2 and 

3 was confirmed by the pairwise cross-covariance, which displayed maxima between the 

temporal activation patterns of synergy 2 and 3 at 44 and 37ms pre- and post-training, 

respectively (Figure S2.1). The three muscle synergies covered 87.1 and 87.2% of EMG 

variation pre- and post-training, respectively (Figure 2.2C). Increasing the number of 

extracted muscle synergies to 4 did add 4.1 and 4.0% of the EMG variation (Figure 2.2D). 

The temporal activation patterns, muscle weightings, and EMG variation were similar pre- 

and post-training. This implies that any modulation of cortico-synergy coherence cannot be 

assigned to the extraction of non-similar muscle synergies at these timepoints.  
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(A) (B) 

  
(C) (D) 

  
 

Figure 2.2 – Muscle synergies after non-negative matrix factorization of the electromyographic 
activity of the nine stance leg muscles. Grand average (A) muscle weighting coefficients, (B) temporal 
activation patterns, (C) reconstruction accuracy, (D) added reconstruction accuracy. (A) Muscle 
weighting coefficients of the nine stance leg muscles for three muscle synergies. The nine stance leg 
muscles were tibialis anterior (TA), peroneus longus (PN), gastrocnemius medialis (GM), soleus (SO), 
rectus femoris (RF), vastus lateralis (VL), biceps femoris (BF), adductor longus (AL), and gluteus 
medius (GL). (B) Temporal activation patterns of the three muscle synergies. Time 0s indicates 
mechanical perturbation onset. The panels depict the mean time-locked activation patterns around 
perturbation onset. (C) Reconstruction accuracy as a function of number of muscle synergies. RA: 
reconstruction accuracy. (D) Added reconstruction accuracy by adding a single muscle synergy as a 
function of number of muscle synergies. RA: reconstruction accuracy. 

 

Cortical source localisation and reconstruction 

We selected the left paracentral lobule (left medial Brodmann area 6) as the region of interest 

for source reconstruction, because overall across timepoints and frequencies it yielded the 

maximum cortico-synergy coherence. In fact, this maximum coherence was found with 

synergy 2 (MNI-coordinates [-9.5, -1.5, 78.5] mm) (Figure 2.3). Coherent sources for 

synergies 1 and 3 were located in right Brodmann area 6 and right Brodmann area 7 (MNI-
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coordinates [14.5, -11.5, 68.5] and [22.5, -61.5, 46.5] mm, respectively). Signatures of the 

Piper rhythm were also found at neighbouring regions at the motor and supplementary motor 

area, however, their magnitude of the cortico-synergy coherence around this particular 

frequency band was clearly lower.   

 
Synergy 1 Synergy 2 Synergy 3 

   
Figure 2.3 – Coherent cortico-spinal sources revealing maximal cortico-synergy coherence. 
Coherent cortical sources showing maximal cortico-synergy coherence, averaged over frequency 
(1-80 Hz) and time. Cross-spectral density matrices of the Dynamic Imaging of Coherent Sources 
beamformers were extended with the temporal activation patterns of the muscle synergies. The 
cross-spectral density matrix including the temporal activation pattern was estimated over 
concatenated data of pre- and post-training timepoint for all participants. Hence, the adaptive 
spatial filters localised sources that showed significant cortico-synergy coherence. Voxels were 
masked by only highlighting voxels containing the highest 95% cortico-synergy coherence. 

 

Cortico-synergy connectivity 

Connectivity estimates revealed significant coherence between the source-reconstructed 

activity in the left paracentral lobule and temporal activation patterns in the beta-frequency 

band and around the Piper rhythm (Figure 2.4A-B). All three synergies reflected significant 

Piper rhythm coherence. Beta-band coherence could primarily be observed in synergy 2. 

Coherence around the Piper rhythm was likewise visible in synergy 2, revealing 

synchronisation in two rhythms at this mode. Cortico-synergy coherence at lower 

frequencies (<10 Hz) was also present, but since this might have been caused by movement 

artefacts, we abstained from investigating this further. Broad-band cortico-synergy 

coherence estimates (10-250 Hz) did not reveal any significant contributions at frequencies 

above the Piper rhythm. 

Clusters containing significant cortico-synergy coherence modulation between pre- 

and post-training timepoints were specifically found around 40 Hz (i.e., Piper rhythm). Piper 

rhythm cortico-synergy coherence decreased as a function of short-term postural training for 

all three synergies (Figure 2.4C).  
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Figure 2.4 – Cortico-synergy time-frequency-coherence representations before and after short-
term postural training and corresponding statistics. (A-B) Grand average cortico-synergy time-
frequency-coherence representations as estimated between the source-reconstructed left 
paracentral lobule activity and temporal activation patterns. Time 0s corresponds to the mechanical 
perturbation onset. (C) Time-frequency-statistics representations estimated with cluster-based 
permutation tests using dependent t-tests as test statistic. Non-transparent clusters feature t-values 
considered as significant, revealing cortico-synergy coherence modulation around 40 Hz. Positive 
t-values correspond to a coherence decrease. 

 

Kinematics 

The time constants of the fitted exponential decays on the most central auto-covariance 

functions were lower at the post-training timepoint (-0.244, 95% confidence intervals:  

[-0.248; -0.240]) compared to pre-training timepoint (-0.203, 95% confidence intervals:  

[-0.208; -0.198]) (Figure 2.5). This decrease in time constant reveals that participants 

regained balance quicker after the mechanical perturbations after training, reflecting the 

effectiveness of the training at the behavioural level. 
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(A) (B) 

  
Figure 2.5 – Auto-covariance as a function of time lag of the principal component capturing most 
mediolateral sway. (A) Graphs represent auto-covariance functions of the most central principal 
component around zero time-lag at pre- and post-timepoint. The principal component capturing 
most mediolateral sway of the bilateral hip and shoulder markers served to estimate the exponential 
decay of the auto-covariance function. (B) A first-order exponential function was fitted on the first 
exponential decay after full convolution alignment of the principal component. 

 

Discussion 

Muscle synergies have traditionally been considered as spinally driven spatiotemporal motor 

patterns. The spinal cord can generate neural output largely independent of the supra-spinal 

levels (Grillner & Zangger, 1979). Over the years, evidence for independent spinal control 

came from studies on animal locomotion, which strongly relies on seemingly self-sustaining, 

rhythmic muscle activations to position the extremities (Grillner, 1985; Stein, 2005). More 

recent work suggests the involvement of the sensorimotor cortex in the formation and control 

of muscle synergies in such modes of motor control (Aumann & Prut, 2015; Pirondini et al., 

2017).  

In the current study, we examined functional cortico-synergy connectivity in terms 

of cortical muscle synergy coherence in postural control and its plasticity with short-term 

motor training. We found that: (i) temporal activation patterns of muscle synergies are 

coherent with neural oscillations in the motor cortex, specifically in the paracentral lobule; 

(ii) the Piper rhythm involves functional cortico-spinal oscillations emerging during a 

postural control task; and (iii) cortico-synergy coherence around the Piper rhythm decreases 

as a function of postural training. 
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Neural activation along the cortico-spinal axis is often believed to primarily reflect 

selective neural control of individual muscles (Bizzi & Cheung, 2013). One example is beta-

band coupling of the primary motor cortex to homologous hand muscles, which decreases 

during bimanual coordination when compared to unimanual movement (de Vries et al., 

2016). This drop in beta-band cortico-muscular coherence is likely to present a more 

dynamical and less stable motor output (Kristeva et al., 2007). The findings of the current 

study, however, demonstrate long-range synchronisation between the motor cortex and 

multiple muscles jointly, indicative of an effective (i.e., low-dimensional) neural circuitry to 

propagate neural oscillations. Cortico-spinal connectivity consists of frequency-locked 

communication between cortical motor areas and motor unit pools along mono-synaptic 

descending projections, diverging to muscles belonging to a single muscle synergy (Aumann 

& Prut, 2015; Nazarpour et al., 2012). Firing-rate-specific coupling may occur via closed 

neural loops (Lemon, 2008), enabling the distinction between multiple muscle synergy loops, 

tailored to meet the biomechanical demands of the motor task at hand. Neural loops convey 

beta-band oscillations to maintain a stable motor state (Engel & Fries, 2010), which become 

uncorrelated when shifting to higher movement frequencies (Brown, 2000). Distinguishable 

roles of the beta- and gamma-band oscillations may motivate the previous belief that cortico-

spinal synchrony controls individual muscles. Multiple synchrony rhythms may be involved 

in a single muscle synergy, as we identified synchronisation of both beta and gamma 

oscillations. However, it remains to be seen whether the oscillations of this synchronisation 

in the beta and gamma band are propagated along the same neural pathways or by parallel-

adjacent pathways. In any case, our results show that the common neural input at the 

muscular level contains super-imposed correlated activity that is propagated from the motor 

cortex along cortico-spinal pathways.  

We found Piper rhythm coherence between the motor cortex and synergistic muscle 

groups of the contra-lateral leg. Apparently, the cortico-spinal tract conveys the Piper rhythm 

from the motor cortex down to groups of muscles simultaneously rather than to individual 

muscles. Cortico-synergy commands may be considered higher order regulations to meet the 

specific postural demands. Neither the muscle synergy structure (muscle weightings and 

temporal activation patterns), nor its complexity (reconstruction quality) varied with postural 

training. That is, our participants employed a selection of a reasonably fixed set of cortical 

muscle synergy representations to meet postural demands. In fact, this can be confirmed by 
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earlier studies showing largely constant muscle synergy representations at short time scale 

(Scott, 2003; Ting, 2007). While the structure and complexity of this set of cortical muscle 

synergy representations was unaffected by short-term postural training, the task-specific 

cortico-synergy connectivity did modulate with postural training, i.e., it decreased in the 

Piper rhythm. Obviously, the motor system modulates by changing the firing rates of neural 

populations rather than adjusting the muscle synergies themselves (Schieber, 2002).  

Regional brain activity modulates when acquiring a novel motor task (Dayan & 

Cohen, 2011). Short-term motor skill acquisition is associated with a decreased activity of 

the primary motor areas (Floyer-Lea & Matthews, 2005). Arguably, the recruitment of less 

coherent or smaller neural populations is needed to generate proper output performing a 

motor task. Here, the decrease in coherence at the Piper rhythm indicates a reduced neuronal 

synchrony in the left paracentral lobule after postural training. The processes of neural 

activation may have been relegated to lower neural centres, for example, the alpha 

motoneurons of the brainstem or spinal cord. Interestingly, the cortical activity of the left 

medial sensorimotor cortex following mechanical perturbations was not modulated by 

postural training (Figure S2.2).  

Earlier studies on cortico-muscular connectivity found a functional role for beta 

oscillations in practising a novel motor task (Houweling et al., 2008; Larsen et al., 2016; 

Perez et al., 2006). Their neural oscillatory upregulation reflects an increased likelihood to 

retain a stable motor output (Baker, 2007). While the function to maintain a constant motor 

output is typically assigned to the beta-band oscillations (Omlor et al., 2007), current findings 

support the hypothesis of Piper rhythm involvement in motor practice. The Piper rhythm has 

been associated with the readiness to perform strong isometric and slow dynamic muscle 

contractions (Mehrkanoon et al., 2014; Mendez-Balbuena et al., 2011; Omlor et al., 2007; 

Petersen et al., 2012; Schoffelen et al., 2005). Cortico-spinal gamma-band synchronisation 

primarily emerges in dynamic motor tasks involving multi-sensory and complex 

sensorimotor integration (Engel & Fries, 2010). Deafferented patients do not display cortico-

muscular low-gamma synchrony between the motor cortex and upper extremity muscles 

during dynamic visuomotor tasks. This hints at a pivotal role of the Piper rhythm in 

proprioceptive feedback (Patino et al., 2008). Our Piper rhythm modulation during postural 

training might have been caused by a sensory re-weighting yielding a down-regulation of 
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proprioceptive inputs. This is essential to control unilateral posture on a moving surface (van 

Dieën et al., 2015).  

Here, we focused on the coupling between the sensorimotor cortex and muscle 

synergies by examining connectivity using a non-directional measure (i.e., coherence). 

Although coherence is generally accepted to quantify connectivity, by construction it does 

not provide any information about causality and cross-frequency coupling. The application 

of other connectivity measures (like bicoherence, (spectral) Granger causality, or generalised 

phase locking) may extend the insights into the cortico-synergy connectivity. Future research 

should address the directionality of the cortico-synergy connectivity and potential cross-

frequency synchronisation. 

From a behavioural point of the view, the decrease in Piper rhythm might be related 

to the predictability of the repetitive postural perturbations. A relatively high predictability 

of the perturbation-induced task may lead to a decrease in the Piper rhythm as a higher Piper 

rhythm has positively been correlated to an increased probability of movement prediction 

errors (Mehrkanoon et al., 2014). Here, mechanical perturbations had a constant magnitude 

of |3°| and were imposed at a rate of ±0.8 Hz. Hence, inter-perturbation variability comprised 

the inter-perturbation time of 0-200ms and perturbation direction (either clockwise or 

counter-clockwise). An increased capability to anticipate the mechanical perturbation (i.e., 

better ability to predict the biomechanical outcomes) will lead to a decrease in the Piper 

rhythm. 

 

Conclusion 

Coherent cortico-synergy pathways communicate neural oscillations between motor cortex 

and muscle synergies. Consequently, these cortico-synergy pathways act as a vehicle to 

transfer frequency-locked oscillatory activity from motor cortex to groups of muscles in the 

periphery and back to sensory areas. The transport along these neural pathways appears 

plastic as coherent oscillations of the Piper rhythm decrease during short-term postural 

training.
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Supplementary material Chapter 2 
 

 

   

    

    

    
Figure S2.1 – Pairwise auto- and cross-covariance between the temporal activation patterns of 
the muscle synergies. Left and upper panels represent the temporal activation patterns after the 
decomposition of the non-filtered EMG. Time 0s indicates perturbation onset. The remaining panels 
depict the pairwise auto- and cross-covariance estimates between the temporal activation patterns. 
Auto- and cross-covariance functions were estimated on the mean temporal activation patterns over 
perturbations. Auto- and cross-covariance were estimated to examine the temporal relationships 
between the muscle synergies following the mechanical perturbation. 
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(A) (B) 

  
Figure S2.2 – Grand event-related potentials of the left paracentral lobule with corresponding 
pre-post statistics. (A) Source-reconstructed event-related potentials pooled over perturbations and 
participants of pre- and post-timepoint. Potential courses represent the mean activity of the left 
paracentral lobule. (B) Test statistic of a paired t-test comparing the event-related potentials of pre- 
and post-timepoints. Dashed red line indicates significance threshold. Results indicate no 
significant modulation of the event-related potentials as a function of the balance training. 
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(A) (B) 

  
(C) (D) 

  
Figure S2.3 – Muscle synergies computed using the conventional decomposition procedure with 
the low-pass filtered electromyographic data. Grand average (A) muscle weighting coefficients, 
(B) temporal activation patterns, (C) reconstruction accuracy, (D) added reconstruction accuracy 
using the low-pass filtered electromyographic data as input of the multivariate decomposition. (A) 
Muscle weighting coefficients of the nine unilateral stance leg muscle for three muscle synergies. 
The nine stance leg muscles were tibialis anterior (TA), peroneus longus (PN), gastrocnemius 
medialis (GM), soleus (SO), rectus femoris (RF), vastus lateralis (VL), biceps femoris (BF), 
adductor longus (AL), and gluteus medius (GL). Here, virtual activation patterns were estimated by 
multiplying the rectified electromyographic signals (including broad spectral content) with the 
inverse of the muscle weightings. (B) Temporal activation patterns of the three muscle synergies. 
Graphs depict the mean time-locked activation patterns around perturbation onset. Time 0s 
indicates mechanical perturbation onset. (C) Reconstruction accuracy as a function of the a-priori 
determined number of muscle synergies. RA: reconstruction accuracy. (D) Added reconstruction 
accuracy by iteratively adding muscle synergies. RA: reconstruction accuracy.  
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Figure S2.4 – Coherent cortico-spinal sources using virtual activation patterns. Cortical sources 
showing maximal cortico-synergy coherence. Cross-spectral density matrices of the Dynamic 
Imaging of Coherent Sources spatial filters were extended with the virtual activation patterns (i.e., 
electromyographic (EMG) signals multiplied with the inverse of the muscle weightings after 
multivariate decomposition of the low-pass filtered EMG). Adaptive spatial filters identified cortico-
synergy coherence sources for the virtual activation patterns. Voxels were masked by only 
highlighting voxels containing the highest 95% cortico-synergy coherence. 
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Figure S2.5 – Cortico-synergy coherence representations using source-reconstructed electro-
encephalographic activity of the left paracentral lobule and virtual activation patterns. (A-B) 
grand average cortico-synergy coherence representations as estimated between the source-
reconstructed left paracentral lobule activity and virtual activation patterns (i.e., 
electromyographic (EMG) signals multiplied with the inverse of the muscle weightings after 
multivariate decomposition of the low-pass filtered EMG). Time 0s corresponds to the mechanical 
perturbation onset. (C) Time-frequency-statistics representations using cluster-based permutation 
testing with dependent t-tests. Non-transparent voxels indicate significant coherence modulation to 
evaluate training effects of pre- and post-timepoint. 
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Figure S2.6 – Pairwise auto- and cross-covariance between the low-pass filtered activation 
patterns. Left and upper panels represent the temporal activation patterns, which was the direct 
output of the multivariate decomposition of the low-pass filtered EMG. Time 0s indicates 
perturbation onset. Remaining panels show the pairwise auto- and cross-covariance estimates 
between the temporal activation patterns. Auto- and cross-covariance functions were estimated on 
the mean temporal activation patterns over perturbations. Auto- and cross-covariance were 
estimated to examine the temporal relationships between the muscle synergies following the 
mechanical perturbation. 
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Figure S2.7 – Pairwise cortico-muscular coherence estimates between the source-reconstructed 
left paracentral lobule activity and electromyography of individual muscles. (A-B) Cortico-
muscular time-frequency coherence representations as estimated between the left paracentral 
lobule and rectified electromyographic time series of individual muscles at pre- and post-timepoint. 
Time 0s corresponds to the mechanical perturbation onset. (C) Time-frequency-statistics 
representations indicating pre-post coherence modulation using cluster-based permutation tests. 
Non-transparent voxels indicate significant coherence modulation to evaluate training effects of 
pre- and post-timepoint. 
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Figure S2.8 – Cortico-synergy coherence representations using source-reconstructed electro-
encephalographic activity of the left paracentral lobule and pooled cortico-muscular coherence 
estimates. (A-B) Grand average cortico-synergy coherence representations as estimated between 
the source-reconstructed left paracentral lobule activity and pooled cortico-muscular coherence 
estimates pre- and post-training. The cortico-muscular coherence magnitudes were linearly scaled 
to the muscle weightings of a particular muscle weighting. After linear scaling, all cortico-muscular 
coherence estimates of the nine muscles belonging to a certain synergy were pooled, resulting in a 
synergy-specific coherence estimate. Time 0s corresponds to the mechanical perturbation onset. 
(C) Time-frequency-statistics representations using cluster-based permutation testing with 
dependent t-tests. Non-transparent voxels indicate significant coherence modulation to evaluate 
training effects of pre- and post-timepoint. 
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Figure S2.9 – Broadband inter-muscular coherence estimates between the tibialis anterior and 
the other stance leg muscles. (A-B) Inter-muscular time-frequency coherence representations as 
estimated between the rectified electromyographic time series of individual muscles at pre- and 
post-timepoint. The nine stance leg muscles were tibialis anterior (TA), peroneus longus (PN), 
gastrocnemius medialis (GM), soleus (SO), rectus femoris (RF), vastus lateralis (VL), biceps 
femoris (BF), adductor longus (AL), and gluteus medius (GL). Time 0s corresponds to the 
mechanical perturbation onset. (C) Time-frequency-statistics representations indicating pre-post 
coherence modulation using cluster-based permutation tests. Non-transparent voxels indicate 
significant coherence modulation to evaluate training effects of pre- and post-timepoint. 
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(A) Non-filtered EMG (B) Low-pass filtered EMG 

  
Figure S2.10 – Single muscle reconstruction accuracy (RA) when extracting three muscle 
synergies. (A-B) Single muscle RA for both non-filtered and low-pass filtered electromyographic 
(EMG) time series. EMG time series were concatenated over trials and participants. Blue and red 
bars represent RA at pre- and post-timepoint.  
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(A) Reconstruction accuracy (B) Added reconstruction accuracy 

  
Figure S2.11 – Reconstruction accuracy (RA) when extracting muscle synergies for every 
participant individually. Deviation of the (A) reconstruction accuracy and (B) added reconstruction 
accuracy across participants for pre- and post-timepoint. Boxplots belonging to pre- and post-
timepoint are coloured blue and red, respectively. The non-filtered electromyographic time series 
were used for the computation of the RA.  
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CHAPTER 3 
 

Differential sets of cortical muscle synergy signatures during adult 

locomotion  
 

Muscle synergy assessments are often employed to evaluate the modular organisation of the 

spinal cord during a locomotion task. While they provide valuable insights into the pattern 

formation of the a-motoneurons at the spinal cord, by construction they cannot capture 

control from supra-spinal layers. We examined how locomotor muscle synergies are 

represented in the sensorimotor cortex, with particular focus on the cortico-synergy 

coherence as a measure of coupling along the cortico-spinal tract. Non-negative matrix 

factorization served to decompose multivariate electromyographic signals into muscle 

synergies. Their representations were localised in the cortex using coherence-based 

beamforming. Overall, the cortico-synergy coherence was maximal in sensorimotor areas 

especially in the beta-frequency band. However, only for the synergies timed to heel strike, 

that are related to the double support phases, the coherence was significant. These 

coherences were closely related to the timing of the activation patterns of the synergies, 

suggesting sensorimotor cortex to be strongly involved in emergence and control of these 

synergies. 

 

 

 

 

 

 

Adapted from: C.S. Zandvoort, A. Daffertshofer, & N. Dominici (2021). Differential sets of 

cortical muscle synergy signatures during adult locomotion. 10th International IEEE 

Engineering in Medicine and Biology Society Conference on Neural Engineering (NER), 

EMBS NER 2021 – Proceedings (pp. 1070-1073). [9441206] Institute of Electrical and 

Electronics Engineers, Inc. doi: 10.1109/NER49283.2021.9441206 
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Introduction 

A major question in motor control is how the central nervous system (CNS) regulates 

muscular activation during locomotion. The CNS combines neural patterns of 

simultaneously operating muscles allowing for controlling them using low-dimensional 

commands (d'Avella et al., 2003). That is, such combinations effectively reduce the 

dimensionality of the neural activity generated by spinal circuitries, typically coined muscle 

synergies. Although the exact neural mechanisms underlying the muscle synergies remain 

enigmatic (Bizzi & Cheung, 2013; Tresch & Jarc, 2009), human electrophysiological 

recordings have shown the existence of such a modular organisation in the spinal cord during 

walking (Dominici et al., 2011). Such recordings often consist of co-registering many 

electromyographic (EMG) signals. Subsequent multivariate statistics (e.g., non-negative 

matrix factorization (NNMF)) revealed that four to five muscle synergies suffice to explain 

the EMG’s envelope dynamics during walking (Ivanenko et al., 2004). This approach 

adequately captures the modular organisation of a-motoneuronal populations (Ivanenko et 

al., 2006), but which neural structures primarily control the locomotor muscle synergies 

remain unclear. 

Neural activity in the spinal cord arguably stems from central pattern generators 

(CPGs) (Grillner & El Manira, 2020). Yet, in human locomotion the input of sensory and 

supra-spinal control seems to be crucial (Grillner, 2006; Hart & Giszter, 2010; Lacquaniti et 

al., 2012). Thanks to recent advances in data analysis, non-invasive electrophysiological 

recordings of the cortical areas, i.e., electro-encephalography (EEG), have proven valuable 

tools to assess dynamical motor control tasks like walking (Bruijn et al., 2015). Recent 

experimental findings of a dynamic postural control task indicated a pivotal role for the 

sensorimotor cortex in the formation of muscle synergies (Zandvoort et al., 2019). There, 

muscle synergy activity was shown to be phase locked with neural oscillations in the 

sensorimotor cortex. The cortico-synergy coupling appeared most in the beta- and (part of 

the) gamma-frequency bands (13-30 Hz and ~40 Hz, respectively). When it comes to 

walking, beta-band activity in the motor cortex has been reported to synchronise with the 

activity of shank muscles (bilateral tibialis anterior), especially during double support phases 

(Roeder et al., 2018). To what extent this also applies to cortico-synergy coupling during 

walking and, hence, whether one may speak of cortical-synergy control, remains to be 

elucidated.  
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Based on our recent findings on postural control, we hypothesised that locomotor 

muscle synergies also manifest in the phase-locked beta-band oscillations of the 

sensorimotor cortex. To investigate this, we employed cortico-synergy coherence as a 

measure of functional connectivity along the cortico-spinal tract. 

 

Methods 

Participants and experimental protocol 

The experimental protocol of this study was approved by the local ethical committee of the 

Faculty of Behavioural and Movement Sciences (reference #VCWE-2020-006). Twelve 

healthy adults (seven females; mean age: 23.0±8.0 years [mean±SD]; weight: 63.9±6.0 kg, 

height: 1.74±0.08 m) participated in the study. Participants were recruited from a student 

pool at the Faculty of Behavioural and Movement Sciences and received educational credits. 

Participants were asked to walk at a comfortable walking speed. Data were acquired during 

30 over-ground trials and six treadmill trials, corresponding to a total of 403±22 strides, and 

a resting state trial recorded at the beginning of the experiment.  

 

Data acquisition 

Kinematic and video data were acquired with a Vicon motion capturing system (Oxford, 

UK) sampled at a rate of 100 Hz. Twenty-three reflective passive markers with a diameter 

of 14 mm were attached to the participant’s skin. As this study is integrated into a larger 

project, we focused on the markers that were bilaterally placed on the following landmarks: 

lateral malleolus, heel, and fifth metatarsophalangeal joint.  

Surface EMG of a set of 24 muscles was acquired, which included the bilateral 

activity of the tibialis anterior (TA), gastrocnemius medialis (GM), gastrocnemius lateralis 

(GL), soleus (SOL), rectus femoris (RF), vastus lateralis (VL), vastus medialis (VM), biceps 

femoris (BF), semitendinosus (SEM), tensor fasciae latae (TFL), gluteus maximus (GLM), 

and erector spinae (ES; recorded at L2). After cleaning the skin with alcohol, Ag/AgCl 

electrode pairs were attached according to SENIAM guidelines (Hermens et al., 2000). 

Movement artefacts were minimised by fixating electrodes and sensor boxes using adhesive 

tape. Two 16-channel wireless systems (Cometa Mini Wave Plus wireless, Bareggio, Italy) 
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served to record the EMG signals that were digitised at 1 kHz after online band-pass filtering 

(10 Hz - 500 Hz). 

Cortical activity was recorded using a 64-channel EEG cap (eegoTM mylab, ANT 

B.V., Enschede, the Netherlands). Electrode placement was based on the 10-20 system with 

CPz as reference (impedance values were below 10 kW). The EEG was sampled at a rate of 

2,048 Hz. Sampling of kinematic, EMG and EEG data were synchronised. 

 

Data analysis 

The gait cycle (stride) was defined with respect to the right leg movement, beginning with 

right foot contact with the surface (heel strike) to the consecutive right foot contact, and thus 

equalled two steps. Foot-strike and foot-off onsets were automatically detected using a peak-

detection algorithm based on the bilateral heel marker and its first time derivative (Roerdink 

et al., 2008). 

For data pre-processing and artefact rejection we proceeded as follows. EEG time 

series were band-pass (5-250 Hz) and notch filtered (at 50, 100, …, 200 Hz). Bad channels 

(defined as mean values outside the 10·mean or SD-values outside the 3·SD interval of all 

channels) were spherically interpolated using neighbouring channels. Next, EEG data were 

decomposed using independent component analysis to identify and remove muscular and 

movement artefacts (e.g., components with spectral composition atypical for EEG were 

omitted). EMG data were high-pass filtered (30 Hz) and notch filtered (at 50, 100, …, 200 

Hz).  

 The EMG signals were rectified with the Hilbert transform, low-pass filtered (10 

Hz), and decomposed into muscle synergies using NNMF. For every subject, the NNMF was 

applied to the averaged muscle activation patterns over all strides to identify the underlying 

muscular coefficients and temporal activation patterns. To construct high-frequency 

temporal patterns of the muscle synergies, the rectified but not low-pass filtered EMG was 

weighted with the (pseudo-)inverse of the muscular coefficients. From hereon we refer to 

these patterns as virtual activation patterns that served as input for the subsequent cortico-

synergy coherence estimates. As mentioned in the introduction, this approach helped 
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identifying phase locking between activity in motor areas and muscle synergies in terms of 

cortico-synergy coherence (Zandvoort et al., 2019). 

We employed Dynamic Imaging of Coherent Sources (DICS) beamformers to 

localise cortical areas with maximal cortico-synergy coherence with the virtual activation 

patterns. White and grey matter volumes (2-mm grid) were obtained from a template MRI 

(Fillmore, Phillips-Meek, et al., 2015) within which spatial filters maximising coherence in 

beta-frequency band were constructed. The resulting sources were statistically evaluated 

using cluster-based permutation testing (1,024 random permutations). Critical alpha and 

cluster-alpha levels were both set to 0.001. The first served as significance threshold when 

contrasting coherence in the double support phases (i.e., maximal coherence during the gait 

cycle) vis-à-vis coherence during resting state. We used the LONI probabilistic brain atlas 

(Fillmore, Richards, et al., 2015) to map anatomy. 

Source time series of the cortical activity exhibiting maximal coherence were 

reconstructed and used for a subsequent analysis. In particular, time-frequency coherence 

was estimated between virtual activation patterns and superior frontal and precentral gyri 

(i.e., the cortical region revealing maximal coherence) using short-time Fourier transforms 

with 0.2s Hanning windows. 

 

Results 

We identified four muscle synergies accounting for 94.1±1.2% of the reconstruction 

accuracy (Zandvoort et al., 2019). The temporal activation patterns and spatial distributions 

(i.e., muscle coefficients) of the decomposed patterns were in line with the findings of earlier 

studies (Figure 3.1). These temporal activation patterns could be divided into two sets: 

Patterns 1 and 3 are timed during the double support phases and are involved in heel-strike 

and toe-off; patterns 2 and 4 are primarily active during single support phases.  
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Figure 3.1 – Spatial organisation (left column) and activation patterns (right column) of the 
decomposed muscular activation patterns. Muscular coefficients are presented as mean and standard 
deviation (i.e., bars and error bars) over participants. Individual and group-average temporal 
activation patterns are shown as black curves and coloured surfaces, respectively. R: right; L: left 
 

Coherence findings on sensor-level (not shown) identified that the maximal 

coherence for all synergies was expected during bilateral double support phases. The DICS 

beamforming yielded maximal statistical differences between beta-band coherences in 

double support phases versus resting state in bilateral premotor and sensorimotor areas of 

the cortex (Figure 3.2). The maximum t-statistic was localised in superior frontal gyrus 

(synergy 1) and precentral gyrus (synergy 3). In line with the findings of the synergy timings, 

their cortical representations could also be distinguished into two sets as only synergies 1 

and 3 (i.e., the bilateral patterns timed at the double support phases) revealed statistically 

significant sources.  
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Figure 3.2 – Localisation of the muscle synergies in the cerebral cortex. Coloured dimension 
represents the test statistic of the statistical contrast between the coherence during locomotion (i.e., 
double support phases) and resting state. L: left; R: right; P: posterior; A: anterior. 
 

As shown in Figure 3.3, the beta-band coherences modulated as a function of the 

gait cycle for synergies 1 and 3. Here, we focus on synergies 1 and 3 because only they 

displayed significant sources at the cortex. For these synergies, beta-band coherences 

appeared to be maximal during the double support phases and their change in time agreed 

with that of the corresponding virtual activation patterns. For the single support phases, no 

significant beta-band coherence could be observed (see our note above).  
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Figure 3.3 – Cortico-synergy coherence between the bilateral superior frontal gyri and synergy 1, 
and bilateral precentral gyri and synergy 3. Coherence was estimated as the magnitude-squared 
coherence and as a function of normalised time (expressed as percentage of the gait cycle) and beta-
band frequencies. 
 

Discussion 

We examined how muscle synergies may be represented in the cerebral cortex during 

walking. To identify possible neural interactions, we focused on the cortico-synergy 

coherence as a measure to quantify the long-distance synchronisation in the motor system. 

Our findings revealed that cortico-synergy synchronisation was particularly evident in the 

sensorimotor cortex in the beta-frequency band. 

Beta-band synchrony is a well-established signature within the motor system during 

voluntary movement and is apparent in both local and long-range synchronisation in terms 

of cortical power and cortico-spinal synchronisation (van Wijk et al., 2012b). Neural 

oscillations over long distances are thought to be conveyed via the monosynaptic pyramidal 

tracts of the cortico-spinal axis. Arguably, the main function of beta-band oscillations is to 

provide a stable outflow from the cortical motor nuclei to maintain a particular posture and/or 

movement state (Baker, 2007).  
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Thus far, the majority of experimental studies focused on the upper extremity tasks 

(van Wijk et al., 2012b). More recently, cortico-muscular coherence in the beta-band was 

identified during locomotion (Roeder et al., 2018). These beta-band oscillations are 

associated with the postural stability during locomotion (Bruijn et al., 2015). 

Neural oscillations from the motor cortex are locked with the different synergies 

possibly via segregated cortico-synergy loops (Aumann & Prut, 2015). These loops activate 

cooperating groups of muscles through activation of a-motoneuronal populations. We found 

synchronisation between sensorimotor cortex and muscle synergies to differ between (sets 

of) synergies. The coherences with synergies 1 and 3 were stronger than those with synergies 

2 and 4. Hence, one may argue that the sensorimotor cortex is especially crucial in 

establishing the control of synergies 1 and 3.  

One may speculate about the cause of the 2×2 grouping of the four muscle 

synergies. In fact, neonatal stepping can be represented by just two muscle synergies 

(Dominici et al., 2011). These stepping has also been reported in premature and anencephalic 

infants (Allen & Capute, 1986; Peiper, 1963) suggesting a primary role of spinal and 

brainstem mechanisms, arguably due to an immature infrastructure of the motor cortex and 

cortico-spinal tract at early age and/or in pathological cases. Needless to say, neonates cannot 

walk independently. Interestingly, however, the temporal organisation of these neonatal 

synergies agrees fairly well with our patterns 2 and 4 that are not signified by cortico-synergy 

coherence. Throughout the first year of development, the CNS undergoes many functional 

and structural reorganisations (Lacquaniti et al., 2012). Around the onset of independent 

walking, two additional synergies emerge, whose shape and spatial organisation largely 

correspond with our synergies 1 and 3. We consider the agreement(s) remarkable which lets 

us hypothesise that these two synergies emerge once the motor cortex and cortico-spinal tract 

are operational. Only then, the broadcasting of motor control commands from the cortex is 

properly developed to enable independent walking rather than ‘reflex-like’ muscle activation 

via synergies 2 and 4. If true, this organisation may have major implications for our 

understanding of motor development, in particular, and the interaction between cortex and 

spinal circuitries, in general. 
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Conclusion 

Our findings show that the locomotor muscle synergies are represented in the sensorimotor 

cortex. These cortical signatures are synergy-specific and differ in synchronisation strength. 

With respect to timing of coupling during the gait cycle, the cortico-synergy connectivity is 

particularly evident at periods of double support. This indicates that the two muscle synergies 

that temporally align to these phases of the gait cycle receive higher cortical control than the 

other two synergies. Locomotor muscle synergies seemingly rely on the control of distinct 

neural circuitries.  
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CHAPTER 4 
 

Cortical contributions to locomotor primitives in toddlers and adults  
 

The neural locomotor system strongly relies on spinal circuitries. Yet, the control of bipedal 

gait is accompanied by activity in motor cortex. In human gait control, the functional 

interaction between these cortical contributions and their spinal counterparts are largely 

elusive. We focused on four spinal activation patterns during walking and explored their 

cortical signatures in toddlers and adults. In both groups, cortico-spinal coherence analysis 

revealed activity in primary motor cortex to be closely related to two of the four spinal 

patterns. Their corresponding muscle synergies are known to develop around the onset of 

independent walking. By hypothesis, the cortex hence contributes to the emergence of these 

synergies. In contrast, the other two spinal patterns investigated here resembled those 

present during newborn stepping. As expected, they did not show any cortical involvement. 

Together our findings suggest a crucial role of motor cortex for independent walking in 

humans. 

 

 

 

 

 

 

 

 

 

 

 

Adapted from: C.S. Zandvoort, A. Daffertshofer, & N. Dominici (in press). Cortical 

contributions to locomotor primitives in toddlers and adults. iScience. doi: 

10.1016/j.isci.2022.105229 
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Introduction 

Walking involves spinal networks that accommodate locomotor primitives (Dominici et al., 

2011; Grillner, 1985, 2006; Ivanenko et al., 2013). In vertebrate models, the spinal networks 

have been identified as populations of premotor interneurons located in the lumbosacral 

spinal cord and are often considered central pattern generators (CPGs) (Giszter, 2015; Takei 

et al., 2017). Locomotor primitives (or muscle synergies) comprise small sets of functional 

units generating the motor output to coordinate muscles (Dominici et al., 2011). Each of the 

primitives reduces neural dimensionality by imposing fixed activation patterns on a set of 

muscles (d'Avella et al., 2003). The activation patterns appear at distinct timings throughout 

the step cycle as shown for both animals and humans (Dominici et al., 2011). While the 

representation of muscular patterns via synergies appears established (Dominici et al., 2011), 

it is unclear how they are organised across the human nervous system (Bizzi & Cheung, 

2013). 

In humans, deciphering the neural basis of muscle synergies is a challenge. It 

typically capitalises on nervous system manipulations or developmental courses (Cheung et 

al., 2020; Cheung & Seki, 2021; Dominici et al., 2011). Early locomotor development can 

be characterised by the preservation of congenital spinal patterns and superimposition of 

emerging patterns (Dominici et al., 2011; Sylos-Labini et al., 2020). In newborn stepping, 

two locomotor primitives/muscle synergies can be observed (Dominici et al., 2011), which 

alternately activate flexor and extensor muscles to move the legs (Thelen & Cooke, 1987). 

Constant time delays between the foot/ground contact and the activity of leg muscles imply 

immature neonate stepping to be driven by segmental reflex pathways (Forssberg, 1985). 

Similarities in stepping between typically developing and anencephalic infants further 

suggest that these neural circuitries are organised at or below the brainstem (Peiper, 1963). 

Cortical motor areas and cortico-spinal tracts around this age are immature as the motor 

system must still acquire most of its myelin (Yang & Gorassini, 2006). One may conjecture 

that the “hard-wired” neural circuitries governing locomotor primitives to be pattern 

generating networks that are separated from descending brain input.  

Independent walking in toddlers coincides with the emergence of two additional 

muscle synergies on top of the two congenital ones of newborn stepping (Dominici et al., 

2011). Along the aforementioned conjecture, these two sets with two synergies each are 

likely to rely on distinct phylogenetically neural systems (Forssberg, 1985). Expectably, the 
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new set emerges after necessary structural and functional re-organisations of intra-spinal, 

sensory and supra-spinal pathways (Forssberg, 1999). Regarding the latter synergy set, we 

here investigate the involvement of cortical motor networks. The motor cortex – much like 

the cortico-spinal tract – develops significantly over the first two years after birth (Eyre et 

al., 2000; Eyre et al., 1991; Huttenlocher, 1979), presumably caused by myelin build-up 

(Kinney et al., 1988).  

Many mammals can walk without neural input from supra-spinal areas by 

capitalising solely on spinal CPGs (Forssberg et al., 1980; Grillner & Zangger, 1979), at least 

if obstacle avoidance is not required (Drew et al., 2008). In quadrupeds, four locomotor 

primitives can be generated throughout the gait cycle without supra-spinal input (Rossignol 

et al., 2006). All the four primitives remain largely intact in rodents that acquired a lesion 

during neonatal and adult phases (Yang et al., 2019). This is remarkable since cortical areas 

project to the midbrain, brainstem, and spinal cord – all these pathways appear evolutionary 

stable (Ocaña et al., 2015). In primates, however, interrupting pyramidal tracts or descending 

brain-stem pathways does yield impaired locomotion (Lawrence & Kuypers, 1968a, 1968b), 

arguably because there, the cortico-spinal tract does contain monosynaptic pyramidal 

projections to leg muscles (Lemon, 2008). 

Bipedal locomotion involves motor centres in the brain (Nielsen, 2003). Especially 

human gait is irrevocably affected without input from supra-spinal motor projections 

(Capaday, 2002; Oudega & Perez, 2012) and a complete interference at the spinal cord will 

cause an inability to walk (Dimitrijevic et al., 1998). Intact supra-spinal areas and a (largely) 

complete cortico-spinal tract are hence prerequisite for self-sustained walking in humans.  

We studied the involvement of the cortico-spinal tract in the control of human gait 

by focusing on four spinal motor patterns during locomotion (Dominici et al., 2011; Grillner, 

1985, 2006; Ivanenko et al., 2013). We expected cortical activity to be not coherent with the 

two congenital locomotor synergies whereas it should be coherent with the two synergies 

that are known to emerge with independent walking in toddlers. As such, functional neural 

reorganisations including plasticity in both motor cortex and cortico-spinal tract may 

contribute to establishing these synergies.  
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Methods 

Participants 

All procedures were in full compliance with the Declaration of Helsinki for experiments 

involving humans. The local ethical committee of the Faculty of Behavioural and Movement 

Sciences Amsterdam (study protocols #VCWE-2016-082 and #VCWE-2020-006) approved 

the experimental procedures. Responsible researchers informed the adults and children’s 

parents about the study procedures and asked them to provide written informed consent prior 

to inclusion into the study. Participants visited the BabyGaitLab laboratory of the 

Department of Human Movement Sciences at the Vrije Universiteit Amsterdam. For the 

toddler measurements, at least one parent or legal guardian was present during the 

experiments along with the responsible researchers. Our laboratory settings and experimental 

procedures were adapted to children so that any risk was equal or lower to that of walking at 

home. 

Eighteen typically developing toddlers and adults were included in the study. 

Population characteristics of both groups can be found in Tables 4.1-4.2. A local child 

healthcare clinic qualified the toddlers (gestational age: 276±8 days; mean±SD) as healthy: 

no neurological disorders, nor any significant health or developmental problems. Toddlers 

were selected based on their time since onset of unsupported walking and had 6.4±1.0 

months of independent walking experience when they visited the lab. We defined the first 

independent steps as the ability to perform four or more consecutive strides without the need 

for any physical support during walking and asked the parents to report this moment to us. 

We scheduled a recording session for each toddler around six months after the first 

independent steps to guarantee that all toddlers in the group had about the same walking 

experience. Adult subjects were recruited from a student pool and were awarded study credits 

for their educational curriculum. Exclusion criteria for the adult population were a self-

reported history of neurological disorders.  
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Table 4.1. Characteristics of the typically developing (TD) toddlers and the number of 
analysed strides. 
 

Toddlers       

Participant Gender Age 
(months) 

Weight 

(kg) 

Height 

(cm) 

Walking 
onset 
(months) 

# strides 

TD1 F 18.2 10.5 83 11.9 457 

TD2 M 17.4 10.5 80 11.7 133 

TD3 M 20.8 14.0 96 15.3 468 

TD4 F 23.1 13.2 91 16.7 570 

TD5 F 19.4 11.7 84 14.8 349 

TD6 M 18.6 12.2 81 12.9 389 

TD7 F 19.8 11.2 82 13.0 648 

TD8 F 20.1 11.0 81 14.0 313 

TD9 M 23.6 12.2 88 14.2 126 

TD10 F 19.3 11.9 81 13.0 94 

TD11 M 16.5 11.3 79 10.6 431 

TD12 F 17.5 10.7 82 11.3 389 

TD13 M 23.0 13.5 95 15.7 779 

TD14 F 19.3 12.5 81 13.1 752 

TD15 F 19.0 10.4 82 12.4 824 

TD16 M 20.9 11.4 84 15.0 687 

TD17 M 19.1 12.9 78 12.9 306 

TD18 F 19.8 10.4 84 13.1 288 

Mean±SD  19.7±2.0 11.8±1.1 84.0±5.2 13.4±1.6 447±225 
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Table 4.2. Characteristics of the adults (A) and the number of analysed strides. 
 

Adults 

Participant Gender Age (years) Weight (kg) Height (cm) # strides 

A1 F 21 59.9 172 416 

A2 F 19 77.6 177 386 

A3 F 21 65.7 173 382 

A4 M 22 67.9 171 415 

A5 F 22 58.5 175 363 

A6 F 20 79.9 174 458 

A7 M 19 66.7 187 396 

A8  M 18 68.0 189 422 

A9 F 19 57.0 170 434 

A10 F 19 65.3 174 396 

A11 F 20 66.1 165 387 

A12 F 19 61.0 164 396 

A13 F 46 57.0 172 403 

A14 F 19 54.0 173 569 

A15 F 19 54.4 165 383 

A16 F 18 51.0 164 376 

A17 F 26 47.0 154 457 

A18 M 25 61.0 178 433 

Mean±SD  21.8±6.4 62.1±8.5 172.1±8.2 415±47 
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Experimental procedures. When entering the laboratory, toddlers got time to familiarise with 

the environment and researchers before starting the experiment. The experimental design 

consisted of over-ground and treadmill walking. Over-ground trials were conducted at a lab 

space with the dimensions of ~5.5x3.5 m, where participants naturally walked barefoot from 

one side of the lab to the other side at their preferred speed. Treadmill trials were performed 

at a paediatric treadmill, specifically designed for subjects of lower ages and suitable for 

adults (N-Mill 60x150 cm, Motek Medical B.V., Amsterdam, the Netherlands). Treadmill 

speed in toddlers was chosen to elicit either supported or unsupported walking. Toddlers 

were encouraged to walk independent of any type of physical support. Either holding one or 

two hand(s), stabilising the trunk or some active body-weight support (i.e., physically 

supporting the body) was applied in case it helped to elicit continuous walking. Short walking 

trials (<2 minutes) were intermitted by rest breaks in between. Adults walked at a self-

selected comfortable walking speed in 30 over-ground and six treadmill trials. Toddlers and 

adults performed a total of 447±225 and 415±47 strides, respectively (Tables 4.1-4.2).  

 

Data acquisition 

Kinematics. A Vicon motion capture system (Vicon Vero v2.2, Oxford, UK), with 10 

cameras placed around the walking path, sampled bilateral kinematic and video (Vue Vicon 

camera) data at 100 Hz. Twenty-three infrared reflective markers (diameter: 14 mm) were 

attached to the participant’s body with adhesive tape. Here, we specifically focused on the 

markers attached to the bilateral lateral malleoli and fifth metatarso-phalangeal joint, and the 

bilateral heel marker in the adults’ group. Electro-encephalography (EEG), 

electromyography (EMG), kinematics, and video feed were simultaneously acquired and 

synchronised.  

 

Electromyography. Bipolar muscular activity was recorded of 20 to 24 muscles 

simultaneously (Figure 4.1). The complete set of 24 muscles consisted of the bilateral 

activity of the tibialis anterior (TA), gastrocnemius lateralis (GL), gastrocnemius medialis 

(GM), soleus (SOL), rectus femoris (RF), vastus lateralis (VL), vastus medialis (VM), biceps 

femoris (BF), semitendinosus (SEM), tensor fasciae latae (TFL), gluteus maximus (GLM), 

and erector spinae (ES). In preparation, the participant’s skin was slightly rubbed with 
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alcohol at the locations where the electrodes were attached. Ag/AgCl electrode pairs for 

toddlers and adults (Mini Golden electrodes, Cometa, 15-mm-diameter electrodes, 

acquisition area of 4 mm2; and Medico, Ambu® Blue Sensor®, respectively) were attached 

to the skin over the muscle belly according to standard recommendations for minimising 

cross-talk between adjacent muscles (Hermens et al., 2000). In toddlers, movement artefacts 

were additionally minimised by fixating the electrodes and wireless EMG sensors to the 

thighs and shanks using elastic gauzes. EMG signals were recorded using two 16-channel 

wireless EMG systems (Wave Plus wireless EMG system with mini probes, Cometa, 

Bareggio, Italy). They were amplified with a gain of 1,000, and online band-pass filtered 

between 10 and 500 Hz before sampling at 1 kHz. 

 

Electro-encephalography. Toddlers and adults wore a 32-channel and 64-channel EEG cap 

(WaveGuardTM, ANT-Neuro, Enschede, the Netherlands; and TMSi REFA, TMSi Twente, 

the Netherlands, respectively) to record electrical cortical activity (Figure 4.1). For toddlers, 

the EEG cap was pre-gelled before mounting it on the head. After placement, with the help 

of a blunt plastic little stick we distributed the impedance gel (SonoGel, Bad Camberg, 

Germany) homogeneously and, if required, we injected additional gel to improve the 

impedance between the skin and electrode. In adults, the EEG cap was aligned to the 

fiducials. We injected impedance gel in every channel to lower the impedance. Toddler and 

adult nylon EEG caps with sintered electrodes were mounted in accordance with the 

international 10-20 system. EEG data were sampled at a frequency of 2,048 Hz (eegoTM 

mylab, ANT B.V., Enschede, the Netherlands). Reference and ground electrodes were 

mounted on channel CPz and AFz, respectively. To compare the cortical activity of toddlers 

and adults, the 64-channel configuration of adults was reduced to match the 32 channels of 

toddlers.  
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Figure 4.1 – Experimental and methodological workflow. We recorded 24-channel electromyography 
(EMG) and 32-channel electro-encephalography (EEG) during walking (top left and right, 
respectively). EMG signals of bilateral trunk and leg muscles were decomposed into muscle synergies 
(in dark blue an example of a temporal activation pattern and muscle weightings). Then both (EMG 
and muscle weightings) were exploited to estimate virtual activation patterns (see body text for more 
details). When source modelling, cortical coherence representations between the virtual activation 
patterns and EEG were localised using beamforming and age-specific anatomical MRIs. Signal 
reconstruction allowed for estimating coherence between synergies and primary motor cortex as a 
function of the gait cycle and frequency. 

 

Data analysis 

Kinematics and gait events. Foot-contact and foot-off events of adult participants were 

detected using a peak-detection algorithm based on the bilateral heel marker and its first-

order derivative (Roerdink et al., 2008). In toddlers, gait events were determined from digital 

video recordings and marker trajectories using Vicon Nexus software (Vicon, Oxford, UK). 
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Gait events were independently assessed by at least two experienced researchers and 

confirmed with kinematic data. Events associated with gait initiation/termination and turning 

as well as non-locomotor movements (e.g., jumps) were discarded from further analysis. 

Here, we defined a complete stride (i.e., a gait cycle) from the moment the right foot first 

touched down until the next consecutive touch-down of the right foot.  

 

Pre-processing and artefact removal electrophysiological data. EMG data were visually 

inspected to identify artefacts and to remove the corrupted data segments from further 

analysis. EMG time series were high-pass filtered at 30 Hz (bi-directional fourth-order 

Butterworth filter), and notch-filtered (bi-directional fourth-order Butterworth filter around 

k·50 Hz; k=1, 2, 3, 4). These filter parameters are commonly applied in muscle synergy 

analysis. EMG signals were full-wave rectified by taking the modulus of the analytic signal 

(Boonstra & Breakspear, 2012). Rectified EMG (𝐸𝑀𝐺G ) was then low-pass filtered at 5 Hz 

(bi-directional fourth-order Butterworth filter), since conventional muscle synergy 

techniques are primarily estimates of the envelope dynamics of the EMG.  

Sensor-level EEG was pre-processed using custom scripts in MATLAB (ver. 

2019a, Mathworks, Nattick, USA) and the FieldTrip toolbox (www.fieldtriptoolbox.org/) 

(Oostenveld et al., 2011). Raw data were tested for outlier samples and interpolated via cubic 

splines. To test for outlier samples, values exceeding ten times the standard deviation of a 

channel after high-pass filtering were identified and subsequently corrected by cubic spline 

interpolation of the non-filtered data. Next, EEG time series were demeaned, bandpass- (bi-

directional second-order Butterworth filter between 1 and 200 Hz) and notch-filtered (bi-

directional first-order Butterworth filter around k*50 Hz; k=1, 2, 3, 4). Channels were 

checked for flat lines (smaller than 2-52 µV) and excessive amplitudes. For the latter we used 

the following criteria: (1) a channel-specific standard deviation of three times higher than 

the mean standard deviation across channels, (2) a channel-specific maximal value of ten 

times higher than the mean or median maximal value of all channels and (3) a standard 

deviation of 100 times smaller than the mean standard deviation across channels. Artefact-

sensitive channels were excluded, and their activity was spatially reconstructed using 

spherically spline interpolation based on available neighbouring channels. Single trials were 

discarded from further analysis when more than 10 channels were marked as artefact 
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sensitive. This led to the exclusion of 1.2% of the trials. An average of 1.5±2.2 channels were 

considered as bad across all trials of all participants. After ‘bad’ channel detection, EEG time 

series were re-referenced to an average common reference. Data of every trial were subjected 

to an independent component analysis (ICA) using a fastICA-algorithm with online bias 

detection and random seed generator. The convergence parameter of the maximal number of 

iterations was set to 5,000. Criteria to consider modes as artefacts were a median frequency 

lower than 1 or higher than 100 Hz (movement and muscular artefacts, respectively). Mixing 

matrix components dominated by frontal channels (eye movements) were considered as eye-

movement artefacts. Sensor-level EEG was reconstructed after discarding the artefact-

sensitive modes from the mixing matrix. For our study population, 3.4±4.0 components were 

discarded across all trials of all participants. 

 

Muscle synergies. Envelope EMG time series were time and amplitude-normalised by 

resampling the epochs from two successive foot touch-down events of the right leg to 201 

samples (Dominici et al., 2011) and normalising the amplitude to their Euclidian norm 

(Banks et al., 2017), respectively. Minima were subtracted from the normalised patterns 

(Figure S4.1). Non-negative matrix factorization (NNMF) decomposed the group average 

muscular envelopes (i.e., the average of all strides within the group) into muscle synergies. 

Generally, NNMF factorises multivariate EMG (dimensions: muscles × time samples) into 

a low-dimensional set of non-negative modes, or more formally: 

 

 𝐸𝑀𝐺 = ) 𝑃' ∙ 𝑊' 	+ 	𝜖
"#/

'#$

	 (4.1) 

 

where the product of the temporal activation patterns (𝑃; time samples × synergies) and their 

muscle weighting coefficients (𝑊; synergies × muscles) of 𝑁 synergies approximate EMG, 

the EMG envelopes; 𝜖 denotes the residual error. Factorisation parameters were set to 100 

repetitions and 1,000 iterations. Termination parameters for residual size and relative change 

in 𝑃 and 𝑊 were set to 10-6. NNMF-output was estimated based on multiplicative update 

and alternating least-squares algorithms (Berry et al., 2007), where 𝑃 and 𝑊 of the former 

4
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factorisation served as starting values for the latter factorisation. To determine the 

reconstruction accuracy of the extracted synergies, we computed the cumulative variance. In 

both group, four synergies were extracted to reproduce the EMG envelopes (Figure 4.2A-B 

and S4.1), accounting for 98.7% of variance of the mean patterns of toddlers and 91.5% of 

variance in adults. 

Given a signal EMG, the NNMF can be computed by minimising the Frobenius 

norm ‖EMG-(𝑃 ∙ 𝑊)‖Fro, which yields a set of weights W, with which one defines the virtual 

activation patterns Pvir as 

 

 𝑃0'1 = 𝐸𝑀𝐺= ∙𝑊,$	 (4.2) 

 

Here 𝑊() denotes the Moore-Penrose inverse of 𝑊 and EMGG  the EMG time series 

before low-pass filtering – note that we used the dot notation to indicate the mere matrix 

multiplication. The virtual activation patterns adequately represent the waveshapes of the 

basic activation patterns P including high-frequency components. Virtual activation patterns 

were included in the coherence analyses with the EEG (Zandvoort et al., 2021; Zandvoort et 

al., 2019).  

We would like to note that in contrast to the original signals EMG the virtual 

activation patterns 𝑃*+, should not be considered rectified EMGs, since for |𝜖|>0 the rank-

reduction in Eq. 4.1 may yield 𝑃*+,<0. We did encounter negative samples (see Table S4.2) 

rendering this note important. By the same token, however, we can stress that 𝑃*+, closely 

resembled 𝑃; correlating 𝑃*+, and 𝑃 revealed correlation coefficients between 0.95 and 0.99. 

 

Source modelling models. To localise cortical sources that exhibit coherence with the muscle 

synergies (i.e., virtual activation patterns), we applied a source modelling approach called 

beamforming. Using such algorithms, the inverse problem (i.e., not knowing where brain 

activity originates from) can be solved. First, we created a forward model comprising a 

volume conduction, source, and electrode model. Realistic five-layer head models were 

constructed using age-specific structural MRIs from the Neurodevelopmental MRI Database  

(Richards et al., 2016; Sanchez et al., 2012). We selected averaged MRIs from the database 
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that were close to the  average age of the toddler and adult population, which were 18 months 

and 20-24 years, respectively (Richards et al., 2016; Sanchez et al., 2012). White matter, 

grey matter, and cerebral spinal fluid segments were created from probabilistic tissue maps. 

Scalp and skull segments were modelled at the outer voxels of the inner-skull tissue maps. 

The five segmented tissues were meshed into hexahedrons. A realistically shaped five-shell 

volume conduction model was constructed from the meshed tissue volumes using the 

SIMBIO-software. Conductivity values of the isotropic compartments were set to 0.43 

(scalp), 0.01 (skull), 1.79 (cerebral spinal fluid), 0.33 (grey), and 0.14 (white) Siemens/meter 

(O'Reilly et al., 2021). The grey segment of the volume conduction model was discretised 

into a three-dimensional grid of 5 mm3 (i.e., source model). We used an inward shift of 15 

mm from the scalp. An age-matched template electrode model was (non-)linearly warped 

onto the outer surface of the head model so that the distances between electrodes and scalp 

were minimised. Forward solutions by means of lead fields were estimated using the volume 

conduction model, source model, and three-dimensional sensor positions. Lead-field 

matrices uniquely solve the forward problem and describe the propagation of the electrical 

activity from cortical dipoles to the sensors in three orthogonal directions.  

 

Cortical source localisation and reconstruction. Dynamic Imaging of Coherent Sources 

(DICS) beamformers were estimated to localise the cortico-synergy coherence between the 

EEG channels and muscle synergies (Gross et al., 2001). Spatial filters of DICS-

beamformers were optimised by maximising the coherence between the sensor-level EEG 

and virtual activation patterns. That is, the cross-spectral density matrices of the EEG were 

extended by employing the virtual activation patterns as reference channel. Generally, 

coherence describes phase locking at iso-frequencies between two signals while being 

weighted by the signals’ power and is defined as: 

 

 𝐶%&(𝜔) =
2〈2𝑆%(𝜔)𝑆&(𝜔)2𝑒'()!(*),)"(*))〉2

-

〈|𝑆%(𝜔)|-〉 〈2𝑆&(𝜔)2
-〉

 (4.3) 
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where 𝐶$%(𝜔) denotes the squared coherence as a function of frequency, 〈∙〉 the expectation 

value, and 𝑆 the Fourier-transform of the signals 𝑥 and y.  

We specifically targeted the beta-frequency band (13-30 Hz) as coherence 

comprising sensor-level EEG yields highest coherence magnitudes at this frequency range. 

To estimate coherence beamformers, we first resampled the virtual activation patterns to 

2,048 Hz so that it matched the EEG’s sampling rate. Both EEG data and virtual activation 

patterns were down sampled to 256 Hz for computational reasons. Resampled time series of 

sensor-level EEG and virtual activation patterns were spectrally transformed using short-

time Fourier transforms and Slepian sequences of 200ms. The frequency of 21.5 Hz was 

selected as centre frequency and spectral smoothing was set to 8.5 Hz. These temporal and 

spectral parameters resulted in Slepian sequences with two tapers. From the Fourier-

transformed data, we estimated the cross- and auto-spectra for all strides available. Cross- 

and auto-spectra were averaged over the time and frequency dimension for every stride. 

From all strides available for every subject, we took the median spectra to obtain subject-

specific estimates. Beamformers were constrained to be real valued to avoid phase shifts 

between channels. Phase shifts would violate the assumption of linear transformations 

between sensors and sources (Westner et al., 2022). The orientation of dipoles did not have 

to be fixed so that moments were obtained in the three orthogonal directions. Note that after 

the application of principal component analysis during source reconstruction only the 

strongest moment was retained. The regularisation parameter of the cross-spectral density 

matrix was set to 5%. We chose this value as a trade-off between the signal-to-noise ratio 

and spatial precision (Woolrich et al., 2011). Adding (a percentage of) mean sensor power 

to the diagonal of the cross-spectrum matrix will effectively broaden the passband and, 

hence, increases the filter’s signal-to-noise ratio (Brookes et al., 2008); by the same token, 

however, regularisation will result in blurring of the output volumes. 

Cluster-based permutation tests were employed to assess the coherence-based 

beamformers. The advantage of cluster-based permutation testing is that it does not require 

any assumptions about probability density functions (Maris & Oostenveld, 2007). Rather, 

their probability density functions are estimated by permuting the representations for several 

partitions by Monte Carlo estimations. Using permutation testing, one can also reduce the 

number of multiple comparisons. Permutation testing accomplishes this by thresholding 

based on clusters from neighbouring samples rather than individual samples. This involves 
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grouping test statistics of adjacent samples that exceed a certain predefined a-level. Clusters 

that exceed the a-level are considered significant (Nichols & Holmes, 2002). For the within-

subject statistics, we iteratively performed permutation testing for each synergy (synergies 

1-4) and group (toddlers and adults). We considered the subject-specific beamformer 

volumes that were computed over the entire gait cycle. We performed a one-sample t-test on 

these volumes for the contrast ‘coherence minus subject-specific mean coherence > 0’. To 

do so, we first normalised individual coherence volumes by subtracting the mean coherence 

over all voxels from the subject-specific volumes. We note that the mean subtraction is 

equivalent to contrasting the coherence volumes without mean subtraction against their own 

mean. This entails that our statistical volumes do not reflect the absolute coherence strength, 

and that significant clusters are indicative of higher spatial coherence relative to all other 

voxels. After mean subtraction, coherence values are bounded between -1 and 1. To stabilise 

its variance, we applied a Fisher transform via the inverse hyperbolic tangents (i.e., 

atanh(coh)) function. In permutation testing, clusters were considered significant based on 

the intensity and size of the clusters. This can be realised via the weighted cluster mass 

(Hayasaka & Nichols, 2004; Maris & Oostenveld, 2007). The weighted cluster mass is 

sensitive to both amplitude of the test statistic and number of grid points. Permutation testing 

was performed with 4,096 randomisations and (cluster-) alpha of 0.005. The source 

localisation volumes, as presented in Figure 4.2, are the result of power and cross-spectral 

averages over the entire gait cycle (from right-to-right foot contact).  

 

Effect of side gait cycle events on cortical coherence sources. To ensure that the cortical 

grouping of the muscle synergies is not simply the result of our time-locking procedure 

(Figures S4.2-S4.3), we again performed the source analysis by time locking from left-to-

left foot contact. The cortical coherence sources defined from left-to-left foot contact were 

similar to those obtained with time locking from right-to-right foot contact (Figures S4.4-

S4.7). That is, synergies 1 and 3 resembled significant beta-band coherence with the motor 

cortex whereas synergies 2 and 4 did not. Again, the observed coherence was found in both 

toddlers and adults.  

Moreover, the coherence sources turned out to be lateralised for some of the 

synergies. The left hemisphere seems to be more dominantly involved as it resembled highest 
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beta-band coherence for synergies 1 and 3 (Table S4.1). This lateralisation was evident in 

toddlers and adults and was independent of the time-lock event (Figures S4.2-S4.7).  

 

Development changes of the cortical representations. To test for between-group, 

developmental differences, we compared the toddlers’ volumes against adults. The 

beamformer volumes of toddlers and adults did have different geometry, hampering valid 

statistical comparisons between groups. Hence, we first spatially normalised the three-

dimensional coherence images (Ashburner & Friston, 2005; Friston et al., 1994). To estimate 

the optimal normalisation parameters, we set the bias regularisation and full-width half 

maximum (FWHM) to 0.0001 (very light) and 60 mm, the regularisation parameters to [0 

0.001 0.5 0.05 0.2], the fudge factor smoothing to 5 mm and the sampling distance for the 

estimation of modelling parameters to 2. Warped volumes were interpolated using a nearest 

neighbouring approach. Additionally, the warped toddler and original adult volumes were 

smoothened with a FWHM of 1 voxel. Like the within-group statistics, source data were 

mean-subtracted, and cJ= atanh(coh). Resulting volumes were subjected to two-tailed 

independent t-tests using permutation testing to statistically assess the toddler-adult contrast 

(Figure 4.2C). 

In line with the within-subject beamformer findings of the main text, significance 

was only found for synergies 1 and 3 in the between-group statistics (Figures S4.8-S4.10). 

For these synergies, mean coherence differences were both positive and negative for toddlers 

and adults. Positive significant clusters (toddlers > adults) were mainly found in the 

postcentral and parietal gyri. Negative significant clusters (toddlers < adults) were localised 

more frontal. Note that the locations of both cluster types are in line with the within-subject 

statistics.  

 

Source reconstruction. To obtain reconstructed activity at the cortex, sensor-level EEG data 

were filtered to reconstruct the time series at the regions of interests (ROIs). ROIs were 

selected from the LONI Probabilistic Brain Atlas (LPBA-40) (Fillmore, Richards, et al., 

2015). Here, we selected the linear filters at a 5-mm circle around the voxel that exhibited 

maximal coherence as found within the precentral and postcentral gyri. After source 

reconstruction, we only kept the source time series comprising the maximal dipole moment. 
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We took the first principal component from the three orthogonal dipole directions. The time 

series comprising the maximal dipole moment were considered for the estimation of the time-

dependent cortico-synergy coherence.  

 

Time-frequency cortico-synergy coherence. Auto- and cross-spectra as a function of time 

and frequency were obtained from source-reconstructed EEG and virtual activation patterns 

of entire walking trials. Auto- and cross-spectra were obtained with short-time Fourier 

transforms with Hanning windows of 200ms. These spectra were epoched from right-to-right 

foot contact and time-warped from 0 to 100% of the gait cycle. Spectra were averaged across 

all strides available for every subject. We computed coherence sample estimates according 

to Eq. 4.3. 

Both toddlers and adults exhibit modulation of beta-band coherence between motor 

cortex and synergies 1 and 3 throughout the gait cycle. Coherence is maximal around double 

support phases (Figure 4.3). To test for developmental changes, we then compared the beta-

band coherence of toddlers and adults. To evaluate coherence changes as a function of time 

and frequency between toddlers and adults, we performed permutation testing on the time-

frequency-coherence representations. We employed an independent t-test to evaluate the 

mean coherences of toddlers and adults. Number of randomisations was set to 8,196 with an 

alpha-level of 0.01 and a cluster-alpha of 0.01. Again, significance of clusters was assessed 

by the weighted cluster mass (Hayasaka & Nichols, 2004; Maris & Oostenveld, 2007). 

We further studied the time-frequency coherence involving the left and right 

primary sensory cortices. For primary sensory cortex, the coherence patterns with synergies 

1 and 3 modulated similarly to the coherences with the primary motor cortex (Figures S4.11-

S4.12). The sensory cortex yielded more pronounced clusters when comparing toddlers and 

adults than the motor cortex (lower rows of Figures S4.11-S4.12). These toddler-adult 

differences between the motor and sensory cortex agrees with the muscle synergy 

representations at the cortex as presented in the main text (Figure 4.2). The cortical 

representations in adults were localised more frontally than the ones in toddlers. While adult 

sources were limited to the primary and supplementary areas of the motor cortex, the primary 

sensory cortex was also significant in toddlers for synergies 1 and 3. Also, to exclude effects 

on hemisphere selection we contrasted the time-frequency representations of left and right 
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hemisphere from the primary motor and sensory areas in toddlers and adults. Findings 

revealed that there are no significant clusters when contrasting these time-frequency 

coherence representations of the right and left hemisphere.  

To show that the observed coherence patterns were not a mere by-product of gait-

cycle dependent power modulations, we estimated the event-related amplitude modulation 

in primary sensorimotor cortex and synergies 1 to 4 (Figure S4.13). The amplitudes of the 

cortical and synergy activity modulated as a function of the gait cycle. The cortical activity 

showed event-related beta-band (de-)synchronisation locked to double and single support 

phases. Likewise, the beta-band amplitude of the virtual activation patterns was temporally 

aligned to the temporal patterns of the synergies. For the coherence patterns involving 

synergies 1 and 3 this means that the maximal coherence as observed during the double 

support phases did not emerge due to low power from the primary motor cortex and/or 

synergies. 

 

Results 

To test for the hypothesised segregation of locomotor primitives into those with and without 

sole sub-cortical organisation and the maturation of the latter, we analysed correlative neural 

outputs from the cortex and the muscles that we recorded using non-invasive 

electrophysiological modalities during walking. We studied two groups – toddlers and adults 

– in which all four primitives were established (Tables 4.1-4.2) (Dominici et al., 2011). In 

both groups, we co-registered EEG and EMG activity of trunk and leg muscles (Figure 4.1). 

Cortical muscle synergy signatures were assessed by combining conventional muscle 

synergy and coherence-based source modelling analyses (d'Avella et al., 2003; Gross et al., 

2001). In brief, cortico-synergy coherence served as a measure of long-distance phase 

locking between cortical areas and muscle synergies (Zandvoort et al., 2021; Zandvoort et 

al., 2019). We specifically targeted neural synchronisation of the cortico-spinal drive in the 

beta-frequency band (13-30 Hz) as these oscillations are known to contribute to cortical 

control of voluntary movements (Baker, 2007; Engel & Fries, 2010; Kilner et al., 2000), 

locomotion (Roeder et al., 2018), and postural control (Zandvoort et al., 2019).  
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Muscle synergies and coherence-based beamformers. For the synergy assessments we relied 

on the linear decomposition of muscular activation profiles through non-negative matrix 

factorization (Figure S4.1). Both toddlers and adults displayed four locomotor primitives 

(Figure 4.2A-B). Synergy patterns 1 and 3 were mainly active during double support phases, 

seemingly involved in the touch-down and lift-off of the legs. Synergy patterns 2 and 4 

occurred during single support phases contributing to forward propulsion and swinging the 

legs. The temporal shapes of synergies 1 and 3 largely corresponded to the supplementary 

primitives reported in earlier work, and the ones for synergies 2 and 4 were comparable to 

the congenital primitives (Dominici et al., 2011). The cortical sensorimotor, supplementary 

motor, and premotor areas displayed significant beta-band coherence sources for synergies 

1 and 3 (Figures 4.2A-B and S4.2-S4.7). Cortical sources were absent for synergies 2 and 4. 

That is, only two out of four muscle synergies displayed significant cortical representations 

and that was evident in both toddlers and adults. Yet, the beta-band coherences appeared 

more posterior for toddlers compared to adults (Figure 4.2A-B). Beta-band coherences of 

synergies 1 and 3 showed a significant increase and decrease in premotor areas and 

somatosensory areas, respectively, suggesting further development and maturation from 

toddlers to adults (Figures 4.2C and S4.8-S4.10).  
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Figure 4.2 – Muscle synergies and their cortical coherence representations for (A) toddlers, (B) 
adults and (C) toddler-adult differences. (A-B) Blue-coloured bars and areas show ensemble-
averaged muscle weightings and activation patterns. The latter are time locked from right-to-right foot 
contact (percentage of the gait cycle). TA, tibialis anterior; GL, gastrocnemius lateralis; GM, 
gastrocnemius medialis; SOL, soleus; RF, rectus femoris; VM, vastus medialis; VL, vastus lateralis; 
BF, biceps femoris; SEM, semitendinosus; TFL, tensor fasciae latae; GLM, gluteus maximus; ES, 
erector spinae. Dark and light blue colours refer to the group of synergies 1 and 3, and synergies 2 
and 4, respectively. Reconstructed coherence representations between electro-encephalography and 
muscle synergies are projected onto age-matched cortical surfaces. Coloured parts on these surfaces 
correspond to the significant voxels determined via one-sided, intra-group t-tests (p < 0.005; see 
Figure S4.3 for the statistical assessments) and indicate areas of the cerebral cortex at which 
coherence exceeds the individual subjects’ means. (C) Cortical surfaces demonstrated significant mean 
coherence differences as obtained by the inter-group independent t-tests, i.e., contrasting toddlers 
versus adults. Positive and negative values, hence, correspond to “toddlers > adults” and “toddlers < 
adults” (p < 0.025; see Figure S4.9 for the statistical assessments). L: left; R: right. 
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Time-frequency coherence. The time-resolved beta-band coherence between the source-

reconstructed activity of primary motor areas and synergy patterns 1 and 3 was maximal 

during double support phases (Figures 4.3 and S4.11-S4.12)1, i.e., when the peak amplitude 

of the synergy patterns can be observed (Figure 4.2A-B). This reveals that coherence and 

synergy patterns were temporally aligned. Such a time locking can also be established 

between the beta-power modulation and virtual activation patterns (Figure S4.13). 

Coherence at double support phases is also evident for the cortico-muscular coherence 

estimates (Figure S4.14). Around the double support phase, the coherences involving 

synergies 1 and 3 appeared higher in the toddlers than in the adults, indicating that coherent 

epochs became more focal in time in the adults. For synergy 1, this was significant after the 

right heel contact, for synergy 3 after the left one (see Figure 4.3, right panels). They differed 

between groups in that coherence epochs became more focal in the adults. That is, while 

beta-band coherence is already present in toddlers, the cortico-spinal pathways carrying beta-

band oscillations mature until adulthood (Figure 4.3).  

 

 
Figure 4.3 – Time-frequency magnitude-squared coherence between the primary motor cortex and 
synergies 1 and 3 for toddlers and adults. The gait cycle is defined from right-to-right foot contact. 
Time-frequency coherences are pooled over participants for every synergy pattern and group. For the 
toddler-adult differences, time-frequency statistics were estimated with cluster-based permutation tests 
using independent t-tests. Non-transparent colours correspond to statistically significant clusters. The 
positive t-values mean higher coherence for toddlers compared to adults.  

 

 

  

 
1 We here present time-frequency coherence of the bilateral primary motor areas as cortico-synergy coherence turned out to be 
independent of hemisphere (Figures S4.11-S4.12). 
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Discussion 

The cortical representations and time-dependent coherences reported here provide first 

support that in humans two locomotor primitives relate to cortical areas. We translated these 

findings into a schematic shown in Figure 4.4, where we highlighted the cortex-dependent 

motor primitives by discarding any additional neural circuitries related to, e.g., cerebellum, 

thalamus, and basal ganglia (Berger et al., 2020; Cheung et al., 2020; Forssberg, 1985) for 

their contribution to the control of motor primitives.  

We found synergies 1 and 3 to be represented in motor network activity both in 

toddlers and adults. The corresponding cortico-synergy coherence was most pronounced 

during the double support phases. This particularly applies to oscillatory activity in the beta-

frequency band that seemingly propagates along the cortico-spinal tract to neuronal layers in 

the spinal cord (Baker, 2007). Its presence around the double support phases suggests cortical 

control of (dorsiflexor) leg muscles involved in the touchdown of the foot. Neonatal stepping 

typically does not display a clear touchdown and – remarkably – this age group lacks 

synergies 1 and 3. Like quadrupeds, neonates touch the ground with their forefoot after which 

they lower their ankle through dorsiflexion, indicating a lack of ankle control (Forssberg, 

1985). Here, we note that leg muscle activity can be suppressed before foot contact by 

stimulating the motor cortex (Petersen et al., 2001). In any case, our findings hint at an 

important role of motor cortex in the activation of the lower leg muscles around foot contact. 

By contrast, synergies 2 and 4 seem to utilise sub-cortical structures for control, e.g., deeper 

cerebellar, brainstem, and spinal networks. They were not fostered by cortical networks and 

may stem from pattern generators that are (largely) independent of cortical input. 

Cortical signatures of synergies 1 and 3 develop further from toddlers to adults 

(Figures 4.2C and 4.3). In the cerebral cortex, the muscle synergy signatures seem to shift 

from the primary somatosensory and motor areas in toddlers to premotor areas in adults 

(Figure 4.2C). In the early stages of walking development, they may therefore reflect sensory 

rather than motor processes. Recall that synergies 1 and 3 were primarily active during 

double support phases, when both legs are in contact with the ground calling for balance 

control via tangential forces decelerating and accelerating the body (Dominici et al., 2011). 

Around the double support phases, cortico-synergy coherence becomes more focal in time 

in the adults in agreement with earlier findings on synergy and muscular activation patterns 

(Dominici et al., 2011; Ivanenko et al., 2013). 
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Figure 4.4 – Conceptualisation of how muscle synergies relate to activity in the primary motor cortex 
in (A) toddlers and (B) adults. The four locomotor primitives are represented at the lumbosacral spinal 
cord as pinpointed by the spinal maps (i.e., spatiotemporal reconstructions of synergy activity at the 
spinal cord) ranging from segments L2 to S2. Spinal maps estimated the alpha-motoneuron activity of 
synergies 1-4 for toddlers and adults by using weighted muscle innervations representative for the 
spinal cord (Ivanenko et al., 2006). As confirmed by the spinal maps, synergies 1 and 3 are 
accommodated more lumbar in the spinal cord compared to synergies 2 and 4. Every synergy co-
activates multiple muscles with a specific weight (dark and light blue lines from the 1 to 4 synergies to 
the corresponding muscles – muscle weightings>0.15). The two dark-blue synergies – circles “1” and 
“3” – reveal phase-locking with oscillations in motor areas. This, however, does not necessarily mean 
that these synergies solely rely on activities in motor cortex. Yet, from our findings, we can only infer 
cortico-spinal interactions. Admittedly, this gross schematic lacks lots of detail, e.g., the involvement 
of cerebellum and deeper cerebellar nuclei like thalamus and basal ganglia (Berger et al., 2020; 
Cheung and Seki, 2021; Forssberg, 1985). No cortico-spinal pathways appear in the two light-blue 
synergies – circles “2”and “4” – which must be regulated by sub-cortical circuitries. The bigger 
cortical sources and thicker cortico-spinal tract in toddlers indicate stronger coherence between 
synergies and primary motor cortex (Figure 4.2C), and broader beta-band bursts in the time-frequency 
coherence (Figure 4.3), respectively.  
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In mammals, the spinal cord contains autonomously regulated networks that solely 

suffice to control alternating extensor-flexor activation of the limbs (Forssberg et al., 1980). 

There, repetitive rhythmic locomotor behaviour may be evoked by local injections of 

neurochemical substances in spinally transected quadrupeds (Grillner & Zangger, 1979). 

This leads to locomotor primitives that are similar for spinal and healthy mammals 

(Desrochers et al., 2019). These networks closely resemble CPGs (McCrea & Rybak, 2008). 

While “[s]tudies of the neural control of animal locomotion certainly provide an important 

basis for such work on human walking…[one] should not expect that the results would 

inevitably be comparable. Decerebrate animals do not have the full gamut of descending 

inputs, and spinalised preparations have none” (Capaday, 2002). The motor cortex has a 

privileged role in humans compared to other mammals as any interference of its downwards 

projections results in locomotor deficits in humans. Our non-invasive assessment of cortico-

synergy coherence allows for disentangling the organisation of the locomotor primitives and 

for separating cortical and sub-cortical processes that possibly underly the formation of 

muscle synergies. As we showed, it may serve to quantify cortical involvement in distinct 

primitives. 

In humans, restoring walking capability after spinal lesions has been nearly 

impossible until recently (Wagner et al., 2018). In motor-complete spinal cord injury 

subjects, alternating locomotor-like movements together with rhythmic muscular activity 

can be evoked by stimulating the spinal cord at frequencies within the beta-frequency range 

(13-30 Hz) (Danner et al., 2015; Dimitrijevic et al., 1998). Arguably, the neural loops 

comprising beta-band synchrony are key components in the pattern-generating capacity 

within the spinal cord. 

The two locomotor primitives associated with the motor cortex closely resemble 

those developing when toddlers start to walk independently (Dominici et al., 2011). To 

pinpoint these developments in more detail, longitudinal studies are needed. They may shed 

light on the differential neural organisation of the muscle synergies. In view of our current 

cross-sectional assessments, we expect starting to walk independently to coincide with the 

emergence of the supplementary synergies and the accompanying cortico-synergy coupling. 
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Limitations of the study 

The present study found that the motor cortex predominantly interacts with two muscle 

synergies. Here, the strength of coupling between the motor cortex and these muscle 

synergies was assessed through cortico-synergy coherence. In neurophysiological sense, it 

is thought that such cortico-spinal coherence particularly reflects neural processes along the 

cortico-spinal tract operating at isolated frequencies. This means that neural processes cannot 

be captured in case the spectral interactions do not occur linearly. In that sense, it would be 

interesting to re-assess cortico-synergy coupling by examining cross-frequency measures to 

see if the functional coupling between the cortical areas and two muscle synergies with 

double support phase patterns persists. 
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Supplementary material Chapter 4  

 
Figure S4.1 – Bilateral muscular activation patterns of toddlers and adults.  Patterns represent 
ensemble averages for both groups and are amplitude-normalised (i.e., EMG envelopes divided by 
their norm over time) and time-locked from right-to-right foot contact (percentage of the gait cycle). 
Thin blue graphs depict reconstructed EMG-activity based on the inner product of the basic activation 
patterns and muscle weightings. TA, tibialis anterior; GL, gastrocnemius lateralis; GM, gastrocnemius 
medialis; SOL, soleus; RF, rectus femoris; VM, vastus medialis; VL, vastus lateralis; BF, biceps 
femoris; SEM, semitendinosus; TFL, tensor fasciae latae; GLM, gluteus maximus; ES, erector spinae. 
Horizontal bars below represent average stance (grey) and swing phases (white). 
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Figure S4.2 – Cortical beta-band coherence representations projected on age-matched MRIs for 
toddlers (top) and adults (bottom) over the gait cycle computed from right-to-right foot contact. 
Coherence sources are like those presented in Figure 4.2 of the main text. The coloured dimension 
represents the coherence voxels that significantly exceeded the subject’s mean coherence. Coloured 
sources are masked by the voxels that turned out significant from one-sided t-testing (p < 0.005; Figure 
S4.3). L: left; R: right; P: posterior; A: anterior. 
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Figure S4.3 – Statistical coherence representations for toddlers (top) and adults (bottom) over the 
gait cycle computed from right-to-right foot contact. Cortical beta-band volumes were subjected to 
one-sided t-tests for the contrast ‘coherence minus subject-specific mean coherence > 0’ (p < 0.005). 
Significant sources for these contrasts are projected onto age-matched template MRIs. L: left; R: right; 
P: posterior; A: anterior.  
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Figure S4.4 – Beta-band coherence representations for toddlers (top) and adults (bottom) when 
source reconstruction is applied from left-to-left foot contact. Cortical volumes are masked by the 
voxels that were significant when testing the statistical contrast ‘coherence minus subject-specific 
mean coherence > 0’ (p < 0.005; Figure S4.6). L: left; R: right. 
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Figure S4.5 – Beta-band coherence representations for toddlers (top) and adults (bottom) when 
source reconstruction is applied from left-to-left foot contact. Sources are identical to those presented 
in Figure S4.4. Cortical volumes are masked by the voxels that were significant when testing the 
contrast ‘coherence minus subject-specific mean coherence > 0’ (p < 0.005; Figure S4.6). L: left; R: 
right; P: posterior; A: anterior.  
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Figure S4.6 – Statistical coherence representations for toddlers (top) and adults (bottom) when time 
locking from left-to-left foot contact. Cortical beta-band volumes were subjected to one-sided t-tests 
for the contrast ‘coherence minus subject-specific mean coherence > 0’ (p < 0.005). Significant 
sources for these contrasts are projected onto age-matched template MRIs. L: left; R: right; P: 
posterior; A: anterior.  
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Figure S4.7 – Beta-band coherence projected on inflated surfaces for toddlers (top) and adults 
(bottom). (A) Right and (B) left foot contact correspond to the event used for time locking during source 
analysis. Cortical volumes were subjected to one-sided t-tests for the contrast ‘coherence minus 
subject-specific mean coherence > 0’ (p < 0.005) to create a mask to identify cortical areas resembling 
significant coherence. L: left; R: right.  
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Figure S4.8 – Toddler-adult differences of the cortical muscle synergy representations presented as 
mean coherences. Source-localised coherence volumes of toddlers and adults were subjected to 
statistical tests to evaluate for between-group differences. Sources have been defined as mean 
coherence difference between toddlers and adults for the contrast ‘Toddlers minus Adults’. Hence, a 
positive coherence difference indicates a higher coherence for toddlers compared to adults. Cortical 
volumes are masked by the voxels that were significant when testing the contrast (p < 0.025; Figure 
S4.9). L: left; R: right; P: posterior; A: anterior.  
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Figure S4.9 – Toddler-adult differences of the cortical muscle synergy representations presented as 
significant t-values after unpaired t-testing between the two groups. Source-localised coherence 
volumes of toddlers and adults were subjected to statistical tests to evaluate for between-group 
differences. Sources have been based on the contrast ‘Toddlers minus Adults’. Hence, positive t-values 
indicate higher coherence for toddlers compared to adults. Cortical volumes are masked by the voxels 
that were significant when testing the contrast (p < 0.025). L: left; R: right; P: posterior; A: anterior.  
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Figure S4.10 – Between-group statistics of the beta-band coherence projected on inflated surfaces. 
Sources have been based on the contrast ‘Toddlers minus Adults’. Hence, positive coherence 
differences indicate higher coherence for toddlers compared to adults. Cortical volumes are masked 
by the voxels that were significant when testing the contrast (p < 0.025). L: left; R: right.  
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Figure S4.11 – Time-frequency magnitude-squared coherence between bilateral primary motor 
cortices and synergies 1 and 3. Gait cycle is defined from right-to-right foot contact. Time-frequency 
coherences are pooled over participants for every synergy pattern for toddlers (upper row) and adults 
(middle row). Opaque colours indicate significant t-values for the developmental changes (lower row). 
Positive t-values yield higher coherence for toddlers compared to adults. freq: frequency. 
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Figure S4.12 – Time-frequency coherence between primary sensory cortices and synergies 1 and 3. 
Similar format as Figure S4.11. Developmental coherence changes are larger in the primary sensory 
cortices compared to the primary motor cortices (lower row of Figure S4.11). Opaque colours indicate 
significant t-values for the developmental changes (lower row). Positive t-values yield higher 
coherence for toddlers compared to adults. freq: frequency. 
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Figure S4.13 – Event-related amplitude modulation of the primary sensorimotor cortices and muscle 
synergies. Amplitude modulation was defined as the instantaneous Hilbert amplitude. The amplitude 
of the cortical and synergy activity modulates as a function of the gait cycle. The cortical activity shows 
event-related beta-band [de-]synchronisation. Beta-band amplitude of the virtual activation patterns 
is temporally aligned to the temporal patterns of the synergies. freq: frequency.
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Figure S4.14 – Pairwise cortico-muscular coherence estimates between channel Cz and all 
individual muscles. Gait cycle is defined from right-to-right foot contact. Time-frequency coherences 
are pooled over participants for every muscular pattern for toddlers and adults. Abbreviations: freq - 
frequency; TA: tibialis anterior; GL: gastrocnemius lateralis; GM: gastrocnemius medialis; SOL: 
soleus; RF: rectus femoris; VM: vastus medialis; VL: vastus lateralis; BF: biceps femoris; SEM: 
semitendinosus; TFL: tensor fasciae latae; GLM: gluteus maximus; ES: erector spinae; freq: 
frequency. 
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Table S4.1. Test-statistic characteristics of the cortical muscle synergy representations. 

 
 # 

synergy 
Atlas area Peak 

t-val. 
RAS [mm] MNI [mm] Talairach 

[mm] 

To
dd

le
rs

 

S1 left superior 
parietal gyrus 

6.31 [0, -51, 63]  [0, -47, 84] [0, -42, 79] 

S2 - 
 

- - - - 

S3 left precentral 
gyrus 

5.87 [-5, -26, 62] [-5, -22, 82] [-5, -18, 76] 

S4 - 
 

- - - - 

A
du

lts
 

S1 left 
postcentral 
gyrus; left 
superior 
parietal gyrus 

4.54 [-23, -35, 52] [-22, -25, 65] [-22, -21, 61] 

S2 - 
 

- - - - 

S3 left middle 
frontal gyrus 

4.17 [-31, 26, 37] [-30, 34, 43] [-30, 35, 38] 

S4 - 
 

- - - - 

S1: synergy 1; S2: synergy 2; S3: synergy 3; S4: synergy 4; RAS: right anterior superior; 
MNI: Montreal Neurological Institute   
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Table S4.2. Mean fraction of negative activations within the virtual temporal 
components averaged across participants. 

 Toddlers Adults 
Synergy 1 0.0 0.0 
Synergy 2 0.111 0.071 
Synergy 3 0.0 0.018 
Synergy 4 0.100 0.088 
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CHAPTER 5 
 

Defining the filter parameters for phase-amplitude coupling from a 

bispectral point of view  
 

Background: Two measures of cross-frequency coupling are Phase-Amplitude Coupling 

(PAC) and bicoherence. The estimation of PAC with meaningful bandwidth for the high-

frequency amplitude is crucial in order to avoid misinterpretations. While recommendations 

on the bandwidth of PAC’s amplitude component exist, there is no consensus yet. Theoretical 

relationships between PAC and bicoherence can provide insights on how to set PAC's filters. 

New method: To illustrate this, PAC estimated from simulated and empirical data are 

compared to the bispectrum. We used simulations replicated from earlier studies and 

empirical data from human electro-encephalography and rat local field potentials. PAC’s 

amplitude component was estimated using a filter bandwidth with a ratio of (1) 2:1, (2) 1:1, 

or (3) 0.5:1 relative to the phase frequency.  

Results: For both simulated and empirical data, PAC was smeared over a broad frequency 

range and not present when the estimates comprised a 2:1- and 0.5:1-ratio, respectively. In 

contrast, the 1:1-ratio accurately avoids smearing and results in clear signals of cross-

frequency coupling. Bicoherence estimates were found to be essentially identical to PAC 

calculated with the recommended frequency setting. 

Comparison with Existing Method(s): Earlier recommendations on filter settings of PAC 

lead to estimates which are smeared in the frequency domain, which makes it difficult to 

identify cross-frequency coupling of neural processes operating in narrow frequency bands.  

Conclusions: We conclude that smearing of PAC estimates can be avoided with a different 

choice of filter settings by theoretically relating PAC to bicoherence.  

 

 

Adapted from: C.S. Zandvoort, & G. Nolte (2021). Defining the filter parameters for phase-

amplitude coupling from a bispectral point of view. Journal of Neuroscience Methods, 350, 

109032. doi: 10.1016/j.jneumeth.2020.109032 
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Introduction 

Electro-encephalography (EEG), magnetoencephalography (MEG), and local field 

potentials (LFPs) are often used to measure brain activity. They allow for the registration of 

neuronal population activity with high temporal precision. Associations within and between 

neural populations are regularly assessed using second-order measures, like power- and 

cross-spectral estimates. However, such measures are constrained to merely reveal linear 

interactions between signals. It does not come as a surprise that brain activity also contains 

neural dynamics related to nonlinear processes (Florin & Baillet, 2015; Jensen & Colgin, 

2007; Tort et al., 2007). To unravel these dynamics, nonlinear measures have gained much 

popularity in recent decades.  

 In general, measures of cross-frequency coupling describe the nonlinear interactions 

of signals across frequencies, being it coupling across amplitude, phase, or frequency. A 

cross-frequency coupling measure that was rather unexplored but gained increasingly 

popularity to assess phase-amplitude interactions is bicoherence (Bartz et al., 2019; Shahbazi 

et al., 2018). Bicoherence describes the normalised cross-bispectrum. The cross-bispectrum 

is a measure of cross-frequency coupling since it evaluates the interactions across three 

frequencies. The first two frequencies can be chosen at will and the third frequency is always 

constrained to be the sum of these two frequencies. In statistical terms, the cross-bispectrum 

is the third-order moment in the frequency domain. Similar to coherence, bicoherence is a 

measure of phase-phase coupling even though it also somewhat depends on amplitudes 

because trials with larger amplitudes receive a larger weight in the average. This dependency 

on amplitudes should be distinguished from the observation by Hyafil (2015) that 

bicoherence is strongly related to phase-amplitude coupling because specific phase relations 

can in general generate an amplitude modulation. This is well known in acoustics as the 

phenomenon of beating where, for example, two sinusoidal sounds with similar frequencies 

lead to a modulated amplitude with the difference of these frequencies. In this setting, the 

modulation of one amplitude and the relation between two phases describe the same 

phenomenon in different terminology. If such an amplitude modulation is related to a phase 

of a low-frequency signal, then, this phenomenon can be described by both a relation of a 

low-frequency phase and a high-frequency amplitude and also by the relation of three phases 

at three different frequencies.  
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 It is somewhat confusing that the term “phase-amplitude coupling” is used 

interchangeably in the literature to mean a specific phenomenon and also specific measures 

used to detect this phenomenon. The construction of those measures is guided by the idea of 

the mechanism: first, amplitudes and phases are extracted from the data, and then the 

functional relation between these signals is calculated. Here, we show in much detail that 

both bicoherence and PAC-measures detect phase-amplitude coupling as a phenomenon, but 

we will reserve the abbreviation PAC for those measures which are defined explicitly as a 

coupling between phase and amplitude.  

 Although PAC and bicoherence are related and share similarities (Kovach et al., 

2018), it has been argued that bicoherence has several advantages over PAC (Shahbazi et al., 

2018). One advantage of bicoherence over PAC is that it is not necessary to filter the signals 

before cross-frequency coupling computation since Fourier transforms are iteratively 

performed over isolated frequencies. Earlier investigations also emphasised that the filter 

characteristics (i.e., centre frequencies and bandwidth) of PAC have effects on the 

subsequent estimates (Berman et al., 2012). Hence, filter features selected for both the low- 

and high-frequency signals can affect the detection of PAC significantly. The bandwidth of 

the high-frequency component is critical in accurately estimating PAC. A bandwidth that is 

chosen too narrow or broad is prone to statistical errors (i.e., result in false negatives and 

positives, respectively). The optimal bandwidth settings remain to be examined further. A 

recent investigation recommended that the bandwidth of the amplitude component should be 

at least twice as large as the frequency of the phase component (Aru et al., 2015). This 

recommendation was followed by experimental studies (Cheng et al., 2016; Martínez-

Cancino et al., 2019; Murta et al., 2017; Seymour et al., 2017). If one aims to investigate 

narrow-band brain rhythms and their higher harmonics; however, a bandwidth that is twice 

as large as the phase component would result in the inclusion of multiple carrier frequencies. 

Although this would result in significant PAC, clear smearing across neighbouring 

frequencies will be shown. To find associations in brain rhythms that are operating within 

narrow frequency bands would therefore be too complicated for PAC. A typical example of 

a narrow-band rhythm is the alpha rhythm (8-12 Hz) and its higher harmonics in closed-eyes 

human resting state. PAC may prevent us to find coupling in such rhythms with a spectrally 

narrowed operational window. 
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 In the current study, we show that the recommendation of taking a bandwidth of 

PAC’s amplitude component that is twice as large as the frequency of the phase component 

is neither necessary nor optimal. This will especially be problematic when one investigates 

cross-frequency coupling for higher harmonics. To show this, we focus on phase-amplitude 

coupling from a bispectral analysis point of view and compare bicoherence and PAC 

analytically and findings of both simulations and empirical data. We first replicate the 

simulations performed in the earlier investigation for both PAC and bicoherence (Aru et al., 

2015). Specifically, we show how bicoherence relates to PAC filtered with varying 

bandwidths for the amplitude component. This bandwidth is determined relative to the phase 

frequency and is set to double, the same as, and half this frequency. We additionally discuss 

the effects of estimating PAC with a squared and unsquared version of the amplitude 

component in a second set of simulated data. Empirical findings using human EEG and rat 

LFPs are reported to substantiate the simulation findings. For real EEG and LFPs data, we 

demonstrate how results for PAC depend more heavily on these ratios when one is interested 

in narrow-band neural dynamics, and how such findings can be understood from bicoherence 

analyses.  

 

Methods 

Phase-Amplitude Coupling and bicoherence definitions 

Phase-Amplitude Coupling. Several versions of PAC exist, and we first recall the formal 

definition of PAC given in Canolty et al. (2006). The essential quantity for PAC, which we 

consider as a weighted phase locking, is  

 

 
𝑃(𝑓2, 𝑓3) = ?|𝑥3(𝑡)|𝑒'4#(5)A5 = B|𝑥3(𝑡)|

𝑥2(𝑡)
|𝑥2(𝑡)|

C
5

	
(5.1) 

 

 

where  𝑥-(𝑡) and 𝑥.(𝑡) are the (complex) Hilbert transforms of a signal filtered in a low- 

and high-frequency band with centres at frequencies 𝑓- and 𝑓., respectively. 𝑖 corresponds 

to √−1. We here defined 𝑃 as a complex number and consider its absolute value as a 
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coupling measure if needed. The corresponding phases and magnitudes at time t are denoted 

by 𝛷-(𝑡) and Q𝑥-/.(𝑡)Q, and ⟨⋅⟩0 denotes the average over time. From 𝑃 and corresponding 

values of that quantity for surrogate data, 𝑃!, where the low- and high-frequency parts are 

shifted relative to each other by a random delay, Canolty et al. (2006) calculate a z-score as 

 

 𝑃𝐴𝐶 =
|𝑃| − 𝑚𝑒𝑎𝑛(|𝑃!|)

𝑠𝑡𝑑(|𝑃!|)
 (5.2) 

 

where mean(|𝑃!|) and std(|𝑃!|) are the mean and standard deviation of |𝑃!|, respectively, 

calculated of 𝐾 surrogate datasets. In our opinion, the calculation of this z-score and its 

interpretation as a Gaussian distributed variable with zero mean and unit standard deviation 

is not trivial, because |𝑃| tend to be non-Gaussian distributed. An alternative statistic will be 

discussed in section Statistical assessments. Apart from details how significance is 

estimated, the crucial point is that in this approach PAC is normalised statistically.   

 Using a statistical normalisation, one cannot directly compare results for a different 

number of trials. For example, when there is a true effect, the normalised quantity diverges 

if the number of trials goes to infinity. This would be different for a non-statistical 

normalisation where the result converges to a constant in that limit.   

 A different approach was suggested by Osipova et al. (2008) where the coherence 

between the instantaneous high-frequency power and the original data was calculated at 

some low frequency. A difference is that coherence includes a normalisation while Canolty 

et al. (2006) only use a statistical normalisation, i.e., coupling measures are normalised by 

estimates of the standard deviation. Here, we will present results using both a conventional 

and statistical normalisation, and we therefore essentially adopted the approach by Osipova 

et al. (2008) with an additional statistical normalisation. 

 Another difference is that instantaneous power is calculated by Osipova et al. (2008) 

with a wavelet approach rather than Hilbert-transformed high-frequency filtered data. We 

slightly deviate from the approach by Osipova et al. (2008) by using high-frequency 

amplitude rather than power and we used the absolute value of the Hilbert transform of the 

filtered data rather than wavelets to estimate the time-dependent amplitude, because we then 

have more freedom to design an appropriate filter. In particular, we used a filter which is 
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essentially flat within the high-frequency band, whereas the wavelet approach corresponds 

to a filter which is maximal in the centre of the band and decreases with distance from the 

centre.  

 We emphasise that relations between PAC and bispectra, as will be recalled or newly 

derived below, can only be found if the respective PAC measure can be expressed by third-

order statistical moments. With minor modifications, this is the case for the approaches in 

Osipova et al. (2008) and Canolty et al. (2006), but this is not the case for the modulation 

index proposed by Tort et al. (2010).  

 Relations for the bispectra and conventional PAC were discussed in Shahbazi et al. 

(2018). In section Relations between Phase-Amplitude Coupling and bispectra, we 

analytically prove that the approach of Osipova et al. (2008) leads to the same relation with 

the bispectra, but we would like to first comment on the relations between estimations based 

on wavelets and the Hilbert transform. In a wavelet approach, the complex signal 𝑥.(𝑡) at 

frequency 𝑓. is calculated as 

 

 𝑥3(𝑡) = :𝑥 ∗ ℎ6$<(𝑡) (5.3) 

 

where ∗ denotes convolution, 𝑥 is the original time series, and ℎ17(𝑡) is the wavelet.  

 To simplify the notation, we consider an odd number of discrete time points running 

from −𝑁 to 𝑁, and the Fourier transforms, to be used below, are defined for discrete 

frequencies 𝑓 also running from −𝑁 to 𝑁. With such a convention the wavelet is defined as  

 

 ℎ6$(𝑡) = ℎ8(𝑡) 𝑒𝑥𝑝:−𝑖2𝜋𝑓3𝑡/(2𝑁 + 1)< (5.4) 

 

with ℎ2(𝑡) chosen by Osipova et al. (2008) to be a Hanning window. This window is 

multiplied by the Fourier transform at some high frequency. PAC is finally defined in that 

approach as the coherence at some low frequency 𝑓- between the original data and the 

instantaneous power, 𝑉(𝑡). 𝑉(𝑡) can then be defined as 
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 𝑉(𝑡) = |𝑥3(𝑡)|- (5.5) 

 

In the context of PAC, we prefer the Hilbert approach over the wavelet approach, but there 

is no fundamental difference between them. To see this, let ℎ[2(𝑓) be the Fourier transform 

of the window, which is substantially different from zero only for small frequencies. Then 

the Fourier transform of the wavelet reads 

 

 ℎU6$(𝑓) = ℎU8(𝑓 − 𝑓3) (5.6) 

 

The convolution of Eq. 5.3 is a product in the Fourier domain, and hence  

 

 𝑥3(𝑡) =
1

2𝑁 + 1
)ℎU8(𝑓 − 𝑓3)𝑥V(𝑓) 𝑒𝑥𝑝:𝑖2𝜋𝑓𝑡/(2𝑁 + 1)<
6

 (5.7) 

 

with 𝑥\(𝑓) being the Fourier-transformed signal. The exponent term denotes the inverse 

Fourier transform. The crucial point now is that, while ℎ[2(𝑓)	does not vanish for negative 

frequencies, ℎ[2(𝑓 − 𝑓.) is negligible for negative frequencies provided that the high 

frequency 𝑓. is remote from zero and the Nyquist frequency relative to the width of the 

wavelet in the frequency domain. We here assume that this is an excellent approximation in 

practice, and using this approximation we can write  

 

 𝑥3(𝑡) =
1

2𝑁 + 1
)ℎU8(𝑓 − 𝑓3)𝑥V(𝑓) 𝑒𝑥𝑝:𝑖2𝜋𝑓𝑡/(2𝑁 + 1)<
698

 (5.8) 

 

which only differs from Eq. 5.7 by the range of the sum over 𝑓. This has the form of a Hilbert 

transform of a filtered signal with the filter given by ℎ[2(𝑓 − 𝑓.). Thus, the wavelet approach 
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is, to excellent approximation, equivalent to the approach based on the Hilbert 

transformation. This result is almost identical to the main result of Bruns (2004), where it is 

argued that these two approaches are formally equivalent. The only difference is that we do 

not think that the derivation given by Bruns (2004) is perfectly accurate, but contains an 

approximation at some point. 

 

Bispectra and bicoherence. The cross-bispectrum is a poly-spectrum, or more specifically, 

the third-order statistical moment of the Fourier transform. The cross-bispectrum reads in 

the most general form for channels 𝑘, 𝑚, 𝑛 and frequencies 𝑓) and 𝑓3 

 

 𝐵:;<(𝑓$, 𝑓-) =< 𝑥V:(𝑓$)𝑥V;(𝑓-)𝑥V<∗(𝑓$ + 𝑓-) > (5.9) 

 

where 𝑥\4(𝑓) denotes the Fourier transform of data in channel 𝑘 at frequency 𝑓 and ∗ the 

complex conjugate. <.> is the expectation value, which can be estimated using a windowed 

segmentation approach. The third frequency of the cross-bispectrum is always constrained 

to be the sum of 𝑓) and 𝑓3. 

  The cross-spectrum is a nonlinear measure of a single time series across multiple 

frequencies. To be able to interpret bicoherence like coherence, the cross-bispectrum is here 

normalised with a three-norm defined as  

 

 𝑁:;<(𝑓$, 𝑓-) = (< |𝑥V:(𝑓$)|> >< |𝑥V;(𝑓-)|> >< |𝑥V<(𝑓$ + 𝑓-)|> >)$/> (5.10) 

 

to obtain a coupling measure with absolute value bounded between 0 and 1 (Shahbazi et al., 

2014). Bicoherence is obtained by dividing the cross-bispectrum of Eq. 5.9 by normalisation 

as described in the equation above 
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 𝑏:;<(𝑓$, 𝑓-) =
𝐵:;<(𝑓$, 𝑓-)
𝑁:;<(𝑓$, 𝑓-)

 (5.11) 

 

The open-source software code to estimate univariate bicoherence as provided in Eq. 5.11 is 

available in the MATLAB-based toolbox MEG & EEG - Toolbox of Hamburg (METH-

toolbox), which can be downloaded from the website of the Department of Neurophysiology 

and Pathophysiology at the Universitätsklinikum Hamburg-Eppendorf 

(https://www.uke.de/english/departments-institutes/institutes/neurophysiology-and-

pathophysiology/research/research-groups/index.html).  

 

Relations between Phase-Amplitude Coupling and bispectra 

To set the filter of PAC's low- and high-frequency component using bispectral analysis, we 

show how PAC is related to bicoherence. Relations between both quantities were defined in 

earlier studies (Kovach et al., 2018; Shahbazi et al., 2018). PAC as used in Osipova et al. 

(2008) and the current study was slightly different from the widely applied version of PAC 

(Canolty et al., 2006). Here, we define PAC as the coherence between the original data and 

the instantaneous power using the Hilbert transform rather than using wavelets. Note that 

relations between PAC and bispectra can be given only for the numerator and not for the 

normalisation factors. 

 The Hilbert transform of filtered data in the high-frequency band reads 

 

 𝑥3(𝑡, 𝑓3) =
2

2𝑁 + 1
)𝐹(𝑓, 𝑓3)𝑥V(𝑓)
6

𝑒𝑥𝑝:𝑖2𝜋𝑓𝑡/(2𝑁 + 1)< (5.12) 

 

where 𝐹(𝑓, 𝑓.) is the filter with centre 𝑓. which is assumed here to be real valued. Also, in 

this formulation 𝐹(𝑓, 𝑓.) is set to zero for negative 𝑓. The numerator is multiplied by a factor 

2 since half the frequencies are omitted. Hence, the magnitude of the Hilbert-transformed 

signal matches the original filtered signal. Using the orthogonality of sinusoidal functions to 
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show that isolated frequencies are uncorrelated, one could substitute part of the inverse 

Fourier transform by the Kronecker-delta function (denoted as the delta function below) 

 

 )𝑒𝑥𝑝:𝑖2𝜋𝑓𝑡/(2𝑁 + 1)< = (2𝑁 + 1)𝛿6,8
5

 (5.13) 

 

The Fourier transform of the power 𝑉(𝑡, 𝑓.) ≡ |𝑥.(𝑡, 𝑓.)|3 at some frequency 𝑓- reads 

 

 𝑉U(𝑓2, 𝑓3) =)|𝑥3(𝑡, 𝑓3)|-
5

𝑒𝑥𝑝:−𝑖2𝜋𝑓2𝑡/(2𝑁 + 1)< (5.14) 

 

with 𝑉[  being the Fourier-transformed power that depends on a low and high frequency and 

|𝑥.(𝑡, 𝑓.)|3 being the instantaneous power of the high-frequency component. Considering 

Eq. 5.14 and integrating Eq. 5.12 into this equation results in 

 

𝑉U(𝑓2, 𝑓3) =
4

(2𝑁 + 1)-
)𝐹(𝑓$, 𝑓3)𝐹(𝑓-, 𝑓3)𝑥V(𝑓$)𝑥V∗(𝑓-))𝑒𝑥𝑝:𝑖2𝜋𝑡(𝑓$ − 𝑓- − 𝑓2)<

56%,6&

 

=
4

2𝑁 + 1
)𝐹(𝑓, 𝑓3)𝐹(𝑓 + 𝑓2, 𝑓3)𝑥V(𝑓)𝑥V∗(𝑓 + 𝑓2)
6

																												 

 

(5.15) 

 

The cross-spectrum, 𝑐, at frequency 𝑓- between the original data and the power now reads 

 

 𝑐(𝑓- , 𝑓.) =< 𝑥\(𝑓-)𝑉[(𝑓- , 𝑓.) > (5.16) 

 

in which 𝑉[  can be substituted by Eq. 5.15, which reads 
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 𝑐(𝑓2, 𝑓3) =
4

2𝑁 + 1
)𝐹(𝑓, 𝑓3)𝐹(𝑓 + 𝑓2, 𝑓3)
6

< 𝑥V(𝑓2)𝑥V(𝑓)𝑥V∗(𝑓 + 𝑓2) >	

																															=
4

2𝑁 + 1
)𝐹(𝑓, 𝑓3)𝐹(𝑓 + 𝑓2, 𝑓3)𝐵(𝑓2, 𝑓)
6

	

 

(5.17) 

 

with 𝐵 denoting the bispectrum as defined in Eq. 5.9. 

 

Setting the low- and high-frequency filters 

While the width of the filter for the high-frequency part is much debated, the filter for the 

low-frequency part can in principle be arbitrarily narrow and is only limited by the trade-off 

between frequency resolution, statistical robustness, and stability of the low-frequency 

process. To discuss the implications of the above relation we will therefore introduce a 

simplification and assume that the low-frequency filter is point-like in the frequency domain, 

i.e.,  

 

 𝐹2(𝑓$, 𝑓2) = 𝛿6%,6# (5.18) 

 

which leads to  

 

 𝑐(𝑓2, 𝑓3) = )𝐺(𝑓, 𝑓2, 𝑓3)𝐵(𝑓2, 𝑓)
6

 (5.19) 

 

with the kernel 𝐺 that is equal to 

 

 𝐺(𝑓, 𝑓2, 𝑓3) = 𝐹3(𝑓, 𝑓3)𝐹3(𝑓 + 𝑓2, 𝑓3) (5.20) 
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where 𝐹.(𝑓, 𝑓.) is the filter with centre 𝑓. which is assumed here to be real valued and 

bandwidth depending on 𝑓-. The kernel is a product of the high-frequency filter and a shifted 

version of it and, hence, 𝑃i (i.e., the coherence-based PAC) is in general a smeared version 

of 𝐵.  

 The smearing is negligible if the kernel G is approximately equal to a delta function. 

For perfect high-frequency filters, i.e., if the filters are 1 within some band and vanish outside 

that band, the filter kernel is approximately equal to a delta function if the width is chosen to 

be slightly larger than the low frequency 𝑓- (i.e., 𝛥𝑓 = 𝑓- + 	𝜖 with ϵ being a small positive 

number). The filter and its shifted version then only overlap in a very narrow frequency 

region and the kernel has a sharp peak. A schematic visualisation of such a filter kernel is 

visualised in Figure 5.1B. More formally, if  

 

 𝐹3(𝑓, 𝑓3) = 𝜒[6$,B6/-,6$CB6/-](𝑓) (5.21) 

 

in which 𝛥𝑓 denotes the bandwidth and 𝜒5(𝑓) is the characteristic function for the filter on 

the interval 𝐴, here, specified around 𝑓.. If choosing 𝛥𝑓 = 𝑓- + 	𝜖 with a tiny number 𝜖, then  

 

 𝐹3(𝑓 + 𝑓2, 𝑓3) = 𝜒[6$,B6/-,6#,6$CB6/-,6#](𝑓) (5.22) 

 

and having a kernel 𝐺 that approximates the delta function 

 

 𝐺(𝑓, 𝑓2, 𝑓3) = 𝜒[6$,6#/-,E/-,6$,6#/-CE/-](𝑓) ≈ 𝛿6,6$,B6/- (5.23) 

 

leading to  

 

 �̀�(𝑓2, 𝑓3) ∼ 𝐵(𝑓2, 𝑓3 − 𝑓2/2) (5.24) 
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 Note that in this case 𝑃i and B are identical apart from a frequency shift by 𝑓-/2 and 

apart from an overall constant, which depends on the filter and is usually irrelevant. The 

frequency shift is due to different conventions regarding what is meant by a frequency. That 

shift would disappear if PAC would be written as a function of the lower end of the filter 

rather than the centre. For example, the first higher harmonic of the alpha rhythm (i.e., 

coupling between 10 and 20 Hz) could be observed with PAC with a bandwidth of 10 Hz for 

the high-frequency filter at low frequency 𝑓- = 10 Hz and high frequency 𝑓. = 15 Hz, 

because then the high-frequency band includes both signals at 10 and 20 Hz. In contrast, the 

same phenomenon can be observed with the bispectrum at 𝑓) = 𝑓3 = 10 Hz, which 

corresponds to a coupling between 10 Hz and 𝑓) + 𝑓3 = 20 Hz. Note that displaying PAC as 

a function of the centre of the high-frequency band can be misleading in the case of higher 

harmonics because we would observe a peak at 15 Hz even though there is no relevant signal 

at 15 Hz.  

 In practice, filters are not perfect, and it is not necessary to choose the filter width 

slightly larger than the low frequency. Rather, choosing the width of the high-frequency filter 

to be equal to the low-frequency results in sharp kernels (with details depending on filter 

order) and avoids smearing over frequencies. We therefore recommend selecting the filter 

bandwidth of the high-frequency component in a 1:1-ratio relative to the frequency of the 

phase component. In other words, the amplitude component of PAC is filtered with a 

bandwidth that is linearly proportional to the frequency of the phase component in a 1:1-

ratio. This filter setting should avoid spectral leakage for PAC (i.e., smearing) over a broad 

frequency band and identify narrow-band coupling. The effect of such a filter width on the 

kernel G is shown in Figure 5.1B. Taking a larger bandwidth includes the signal content of 

more neighbouring frequencies, resulting in smearing of PAC. As an earlier study 

recommended to have a filter width of the amplitude component that is twice as large as the 

phase frequency (Aru et al., 2015), we filter the amplitude component and phase frequency 

in a 2:1-ratio. Following our theory defined above, this kernel will result in a smeared version 

of PAC (Figure 5.1A). On the other hand, if the ratio gets smaller than 1:1, PAC inevitably 

vanishes (Figure 5.1C). To show that the bandwidth cannot be too small, we additionally 

filter the amplitude component with a bandwidth that is half the frequency of the phase 

component (0.5:1-ratio). Figure 5.2 provides a detailed overview which steps were taken to 

compute bicoherence and PAC.  
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 This is the main theoretical result of this paper which will be illustrated below for 

simulated and empirical data, in which we will compute PAC using these above-mentioned 

filter settings of PAC and relate it to bicoherence. For simplicity, we only focus on the 

univariate cases of bicoherence and PAC. We finally recall that such relations are only valid 

for the numerators of the coupling measures, but for bicoherence it was shown in Shahbazi 

et al. (2014) and Shahbazi et al. (2018) that different normalisations have almost no effect 

on its statistical properties. 

 

 
Figure 5.1 – Filters were calculated for fixed low frequency 𝒇𝑳 = 𝟏𝟎 Hz and high frequency 𝒇𝑯 =
𝟒𝟎 Hz for varying widths of the high-frequency band, denoted as 𝜟𝒇 and indicated in the titles of 
the subpanels. The filters and the corresponding shifted filters are shown by black lines. The kernels 
𝐺, i.e., the products of the filters, are shown in red. We used a FIR filter of 1s duration. At (B) 𝛥𝑓 = 𝑓# 
we observe a (moderately) sharp kernel. For (A) 𝛥𝑓 = 2𝑓# the kernel is not sharp, and for (C) 𝛥𝑓 =
𝑓#/2 it basically vanishes altogether. Of course, the kernel can be made sharper with longer filters. 
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Figure 5.2 – Overview of the analysis pipelines in the current study to derive the bicoherence and 
phase-amplitude coupling (PAC) measures. (1.) Cross-frequency coupling measures can be computed 
from various electrophysiological time courses (e.g., EEG, MEG, or LFP). For the bicoherence case 
(left column), (2.) data is transformed to the frequency domain at the frequencies 𝑓$, 𝑓%, and 𝑓$ + 𝑓%. 
(3.) The complex-valued cross-bispectrum can be obtained iteratively for 𝑓$ and 𝑓%. (4.) The magnitude 
of the cross-bispectrum corresponds to bicoherence. For the PAC-case (right column), (2.) the 
bandwidth to filter the amplitude component is considered being critical. Hence, time courses are 
filtered with three bandwidths at frequency 𝑓%. The bandwidth is proportionally scaled in a ratio of 2:1 
(i.e., the bandwidth to filter the amplitude component is twice as large as the frequency of the phase 
component, 𝑓$), 1:1, and 0.5:1 to the frequency of the phase component. (3.) After taking the magnitude 
of the Hilbert transform to get the amplitude component, (4.) PAC is estimated as the coherence 
between the original time course and high-frequency amplitude at some low frequency. For both 
bicoherence and PAC, (5.) statistical meaning of the outcomes was validated by surrogate analyses. 
For the illustrative examples in this flowchart, we simulated a time course having cross-frequency 
coupling with centre frequencies at 10 and 25 Hz.  
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Simulated data 

We first focus on the simulations as performed by Aru and colleagues (2015). In their study, 

they simulated a univariate signal oscillating at different frequencies. More precisely, the 

simulated signals manifested PAC dynamics because the amplitude of the high-frequency 

signal was modulated by the phase of the low-frequency signal. We formulate the following 

time series which is analogous to theirs:  

 

𝑥(𝑡) = 𝑠𝑖𝑛:𝛷2(𝑡)< + :1 − 𝑠𝑖𝑛:𝛷2(𝑡)<< 𝑠𝑖𝑛:𝛷3(𝑡)< + 𝜂(𝑡) 

= 𝑠𝑖𝑛:𝛷2(𝑡)< + 𝑠𝑖𝑛:𝛷3(𝑡)< −
1
2
:𝑐𝑜𝑠:𝛷3(𝑡) − 𝛷2(𝑡)< − 𝑐𝑜𝑠:𝛷3(𝑡) + 𝛷2(𝑡)<< + 𝜂(𝑡) 

 

(5.25) 

 

where 𝛷-(𝑡) and 𝛷.(𝑡) denote the phase time series at some low and high frequency, and 

𝜂(𝑡) is white Gaussian noise with a standard deviation of 3. The noise is added to avoid 

oscillating effects at irrelevant frequencies merely due to spectral leakage. We note that 

taking the phases as  

 

 𝛷2,3(𝑡) = 2𝜋𝑓2,3𝑡 (5.26) 

 

would have resulted in comparable results in our case. However, taking pure sine waves in 

simulations should be avoided because of principal reasons. Pure sine waves have infinite 

auto-correlation length and, hence, if data are divided into epochs, all epochs are statistically 

dependent on each other. In fact, pure sine waves are not ergodic, meaning that the time 

averages are generally not identical to ensemble averages. As an example, consider two 

perfect sine waves of identical frequency but random and independent initial phases. The 

coherence between the two sine waves is 1 when calculated as a time average, because the 

phase difference is constant across time whereas it vanishes when calculated as an ensemble 

average, because the phases are random. Here, the phase time series are obtained from the 

phase of the Hilbert transforms of white Gaussian noise which was narrowly filtered around 

the frequencies of 10 and 40 Hz. We note that the simulated time series contain additional 

dominant frequencies at 30 and 50 Hz because of the modulated high-frequency component.  
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 A common problem for the interpretation of PAC is the question whether the result is 

a consequence of genuine phase-amplitude coupling as opposed to the mere presence of a 

non-sinusoidal waveshape. However, such a distinction can be ambiguous as it is not clear 

why phase-amplitude coupling cannot result in repeated non-sinusoidal waveshapes. In 

particular, using deterministic phases as in Eq. 5.26 the simulated PAC results in waveshapes 

which are repeated every 100ms, which is not the case for random phases. Still, results for 

PAC and bicoherence are almost identical for the deterministic and stochastic version. The 

question whether a specific waveshape is repeated cannot be answered using third-order 

statistical moments only. In this paper, we do not make an attempt to answer that question, 

and we take the view that sharp peaks at multiples of the base frequency are likely to be 

caused by higher harmonics due to non-sinusoidal waveshapes.  

 The above-described theory on the equivalence between PAC and bicoherence 

specifically applies to third-order statistical moments and cannot be developed for second-

order moments. Yet, we estimate PAC as the coherence between the original time series and 

the instantaneous amplitude. In a second simulation, we investigate the effects of using a 

squared (i.e., power) and unsquared (i.e., amplitude) version for PAC's amplitude 

component. The simulated signal comprised a sawtooth signal with cross-frequency coupling 

at a base frequency of 10 Hz and its higher harmonics (for bicoherence). To do so, we 

generated a sawtooth signal sampled at 500 Hz that repeats every 100ms with a total duration 

of 10 minutes. White noise with an equal variance was superimposed on top of this sawtooth 

signal.  

 

Empirical electro-encephalographic and local field potential data  

To substantiate our simulation findings, we compared estimates of bicoherence and PAC on 

empirical data recorded in humans and rats. Both datasets are open-source and publicly 

available on http://clopinet.com/causality/data/nolte/ and 

http://doi.org/10.5061/dryad.12t21.  

 The human data comprise cleaned resting state EEG. The online dataset is a subset of 

data that was reported earlier (Nolte et al., 2008) as the original dataset consisted of 88 

participants. In the experimental paradigm, participants were asked to close their eyes for 

10-13 minutes. Simultaneously, EEG recordings were acquired, which were epoched into 
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152-202 segments of 4s each. 19-channel EEG (configured to the international 10-20 system) 

was registered at a sampling rate of 256 Hz. EEG data are referenced to a linked mastoids 

reference. Nineteen Ag/AgCl electrodes included Fp1, Fp2, F7, F3, Fz, F4, F8 T3, C3, Cz, 

C4, T4, T5, P3, Pz, P4, T6, O1, and O2. Given that we were interested in the coupling of 

narrow-band brain rhythms, the primary aim was to localise neural oscillations at the alpha 

rhythm and its higher harmonics. To find the strongest coupling effects, we specifically 

targeted the EEG channel comprising maximal alpha power. Hence, we selected channel 17 

of participant 8 (i.e., the channel yielding maximal alpha power at 10 Hz) for further analysis. 

The alpha oscillations have a ground frequency around 10 Hz. The higher harmonics yield 

frequencies of a factor k*10 higher (with k=1,2,3,…).  

 Rat data comprise LFPs of seven animals. LFP data were recorded during 12 hours 

of sleep and awake periods. We report findings on the REM sleeping periods. LFP activity 

was recorded from the CA1 pyramidal cell layer of the hippocampus. Data of 16-channel 

silicon-layered probes were sampled at a rate of 1,000 Hz. In the original investigation, the 

authors mainly aimed to identify theta-gamma PAC (and cross-frequency phase-phase 

coupling) in hippocampal activity (Scheffer-Teixeira & Tort, 2016). We predominantly 

focus on the theta-gamma phase-amplitude coupling, which would be the cross-frequency 

coupling between the frequencies of 4-8 and 40-150 Hz. For the rat findings, we specifically 

report the results of channel 16 of rat 7.  

 

Statistical assessments 

In order to statistically assess single PAC and bicoherence representations, we applied a 

surrogate technique. The null-hypothesis is defined as the cross-frequency coupling being 

zero. More specifically, it is assessed whether non-zero values of PAC and bispectra can be 

considered as meaningful phase-amplitude coupling or as findings by chance. The surrogate 

analysis consists of time-shifting the amplitude component of PAC and shuffling the third 

Fourier transform of the cross-bispectrum. For the construction of the surrogate datasets we 

follow the approach of Canolty et al. (2006) but deviate in the statistical interpretation of the 

results. For PAC, we randomly time-shift the amplitude component by a random multiple of 

1s with periodic boundary condition, and for the bispectra the same is done for the signal at 

the highest frequency (i.e., at frequency 𝑓) + 𝑓3). Using the central limit theorem, under the 
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null-hypothesis 𝑃 is approximately Gaussian distributed in the complex plane with zero 

mean and uniformly distributed phase. Then |𝑃|3 is exponentially distributed with density 

𝑝𝑑𝑓(|𝑃|3) ∼ 𝑒𝑥𝑝(|𝑃|3/𝛼3) and with 𝛼3 =< |𝑃|3 > (Freyer et al., 2009). Furthermore, 

under the null-hypothesis 𝑃 is drawn from the same ensemble as the surrogates, and hence 

𝛼3 can be estimated as  

 

 𝛼- ≈< |𝑃!F11(𝑘)|- >: (5.27) 

 

where 𝑃!6,,(𝑘) is the coupling of the 𝑘.th surrogate dataset, and <.>4 denotes average over 

all surrogate datasets. In the results shown below we will display the quantity 

 

 𝑟 =
|𝑃|-

< |𝑃!F11(𝑘)|- >:
 (5.28) 

 

and it is straightforward to show, by integrating the probability density, that the p-values can 

be calculated as 𝑝 = exp(−𝑟). Statistical results for bispectra were calculated analogously. 

Note, for both PAC and bispectra, we used non-normalised quantities for statistical 

evaluation because it is these quantities which are plane averages over segments, and which 

are then approximately Gaussian distributed in the complex plane.  

 

Results 

Simulated data 

An example epoch of the first simulated data and the power spectral density are depicted in 

the left column of Figure 5.3. The power spectral density highlights peaks at 10, 30, 40, and 

50 Hz. Although our simulated data only contained two frequencies (i.e., 10 and 40 Hz), the 

two side peaks at 30 and 50 Hz were introduced due to the 40-Hz modulation. To be able to 

identify PAC, at least one of these two side frequencies must be included in the filtered signal 

of the amplitude component.  
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Figure 5.3 – Temporal and spectral characteristics of the simulated signals (non-harmonic and 
sawtooth signals), empirical electro-encephalographic (EEG), and empirical local field potential 
(LFP) data. The upper row depicts example epochs of the time series. The lower row reveals the power 
spectral density (PSD) of the signals.  
 

 Figure 5.4 reveals the core of our argumentation why the filter bandwidth of the 

amplitude component should not be twice as large as the frequency of the phase component. 

The left panel of Figure 5.4A depicts PAC as a function of the frequency of the amplitude 

component (abbreviated as 𝑓32) and the bandwidth used for its filter (𝑓7). In this 

representation, the frequency of the phase component (𝑓)) was fixed to 10 Hz. No PAC is 

observed when 𝑓7 is smaller than 10 Hz. At an 𝑓7 of 10 Hz, two coupling peaks appear 

around 35 and 45 Hz. Increasing 𝑓7 further leads to smearing of both peaks and eventually 

to a merge of the two peaks when 𝑓7 approaches 20 Hz. In fact, the mere reason why PAC 

at 40 Hz can be observed is because the peaks at 35 and 45 Hz merge together. The right-

hand representation of Figure 5.4 reveals the statistical ratio between the real and surrogate 

coupling (as defined in Eq. 5.28). We recall that p-values can be derived from this ratio by 

taken 𝑝 = exp(−𝑟𝑎𝑡𝑖𝑜). 

 Another way to show PAC's tendency to smear is by presenting PAC as a function of 

the frequencies 𝑓) and 𝑓3 for various 𝑓7. When 𝑓3 is computed with an 𝑓7 that is twice as 

large as 𝑓) (i.e., ratio 2:1), a smeared PAC can be observed ranging from 30-50 Hz (left panel 

 
2 In the plots of PAC, we abbreviated the phase and amplitude frequency as 𝑓' and 𝑓(, respectively. Although we use 𝑓' and 𝑓( to 
abbreviate the frequencies of bicoherence as well, we would like to emphasise that these frequencies are based on different 
conventions. 
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of Figure 5.4B). Note that 𝑓7 would be 20 Hz when 𝑓) equals 10 Hz, meaning that the two 

side peaks at 30 and 50 Hz are included when PAC is computed at 40 Hz. If we, however, 

select 𝑓7 in a 1:1-ratio then PAC reveals the two peaks at 35 and 45 Hz while the PAC-peak 

centred around 40 Hz disappears (left panel of Figure 5.4C). For this filter setting, the side 

peak at either 30 or 50 Hz is included. PAC vanishes if 𝑓7 becomes substantially smaller 

than 𝑓), which is shown for a 0:5-1-ratio (left panel of Figure 5.4D). The previously observed 

PAC at 40 Hz and the neighbouring peaks at 35 and 45 Hz disappear. Put differently, this 𝑓7 

cannot include the dominant peak at 40 Hz and one of the side frequencies simultaneously. 

The latter result emphasises the pivotal role of including at least one of the side frequencies 

at 30 and 50 Hz in the estimation of PAC. The above-mentioned cross-frequency coupling 

results were confirmed by the ratio using surrogate statistics, which are provided in the right 

column of Figure 5.4. The reported statistical ratios correspond to significant coupling 

findings.  
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Figure 5.4 – Phase-amplitude 
coupling (PAC) and bicoherence in 
the non-harmonic simulated data. 
Left-hand plots represent the mean and 
right-hand plots the ratios between the 
actual cross-frequency coupling and 
surrogate datasets. (A) PAC as a 
function of the amplitude component 
(𝑓%) and its filter bandwidth (𝑓'). Here, 
the frequency of the phase component 
(𝑓$) was set to 10 Hz. This 
representation reveals that two peaks 
of PAC can be observed at a filter 
bandwidth of 10 Hz while a bandwidth 
of 20 Hz reveals a smeared version. (B-
D) PAC as a function of the phase and 
amplitude component chosen a 
bandwidth that is double as large as 
(2:1-ratio; 𝑃𝐴𝐶 − 𝑓' = 2𝑓$), equals 
(1:1-ratio; 𝑃𝐴𝐶 − 𝑓' = 𝑓$) or is half 
as large as (0.5:1-ratio; 𝑃𝐴𝐶 − 𝑓' =
0.5𝑓$) the frequency of the phase 
component. The representations reveal 
a clear dependency of PAC on the filter 
bandwidth. (E) Bicoherence 
representation yielding significant 
cross-frequency coupling at 30 and 40 
Hz. Cross-frequency coupling in 
bicoherence matches the PAC estimate 
comprising a bandwidth that equals the 
phase component frequency. PAC: 
phase-amplitude-coupling; 𝑓': filter 
width; 𝑓$: low frequency; 𝑓%: high 
frequency. 
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 In the view of bicoherence, the observation of phase-amplitude coupling would be 

rather different compared to PAC (left panel of Figure 5.4E). The bispectrum is the third-

order moment of the spectrum and measures the coupling between signals at three 

frequencies. Given the simulated data, two things could happen in terms of observing 

coupling between frequencies. There will be coupling between either 10, 30, and 40 Hz or 

10, 40, and 50 Hz. In the bispectral analysis, bicoherence reveals most comparable results to 

the PAC estimated with a 1:1-ratio, except for a frequency shift of 5 Hz (i.e., 30 and 40 Hz 

for bicoherence versus 35 and 45 Hz for PAC). This frequency shift is due to a different 

convention for the meaning of the frequencies. For example, bicoherence with 𝑓) and 𝑓3 

chosen to be 10 and 30 Hz reveals coupling between 10, 30 and 40 Hz. A comparable finding 

for PAC can be observed with the filter for the high-frequency part centred at 35 Hz such 

that the lower and upper end of that filter, having a width of 10 Hz, include the rhythms at 

30 and 40 Hz.  

 As mentioned earlier, the theory of section Relations between Phase-Amplitude 

Coupling and bispectra and Settings the low- and high-frequency filters specifically applies 

to PAC-forms expressed as a third-order statistical moment, however, the PAC-results of the 

simulated data as presented above were estimated with amplitude rather than power. The 

simulated data qualitatively reveal comparable results when estimating PAC with a high-

frequency amplitude and power component. For empirical findings, our theory can 

essentially be used for unsquared versions of PAC as well. Yet, differences between both 

PAC-versions were found in the sawtooth simulation (i.e., our second set of simulated data), 

which are presented in Figure 5.5. An example time series and the power spectral density are 

depicted in the second column of Figure 5.3. Generally, PAC-results obtained in a 1:1-ratio 

are most comparable to bicoherence (middle row of Figure 5.5). While the squared version 

(i.e., power) still reveals non-smeared PAC, PAC slightly smears for the unsquared (i.e., 

amplitude) version (centre versus middle-right panels of Figure 5.5). Thus, although we 

found fairly comparable results for PAC between the squared and non-squared version in the 

non-harmonic simulation, the squared version of PAC better relates to bicoherence in the 

sawtooth simulation. PAC-estimates computed in a 2:1- and 0.5:1-ratio are comparable to 

the first simulation. For those filter settings, PAC is either smeared or non-existent, 

respectively.  
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Figure 5.5 – Cross-frequency coupling of the simulated sawtooth time series. Coupling was estimated 
for bicoherence (left panel), phase-amplitude coupling (PAC) with a power component (PAC (power); 
middle column), and PAC with an amplitude component (PAC (amplitude); right column). Both 
versions of PAC are computed with a high-frequency component estimated in a 2:1- (upper row), 1:1- 
(middle row), and 0.5:1-ratio (lower row). PAC: phase-amplitude coupling; 𝑓': filter width; 𝑓$: low 
frequency; 𝑓%: high frequency. 
 
 

Empirical electro-encephalographic data 

The human EEG data yield highest power at the occipital channels at the alpha-band and its 

higher harmonics (see the third column of Figure 5.3). Like the simulated data, PAC 

estimated on the EEG data highlight clear dependency on 𝑓7 (left panel of Figure 5.6A). 

When 𝑓) is set constant to 10 Hz, two peaks appear at an 𝑓7 that is close to 10 Hz. Note that 

this would correspond to a 1:1-ratio between 𝑓7 and 𝑓). It is hardly possible to identify two 

PAC peaks when 𝑓7 is below 10 Hz. Enlarging 𝑓7 above 10 Hz leads to an increased spectral 
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window in which we can observe significant PAC and the two coupling peaks get smeared 

out over a broader frequency range. This ultimately results in the merging of the two peaks 

around an 𝑓7 of 15 Hz. At this point the 𝑓7 only is 1.5 times as large as 𝑓). 

 Such cross-frequency coupling patterns also emerge when representing PAC over 𝑓) 

and 𝑓3 while defining 𝑓7 based on 𝑓). The coupling is rather broadly smeared (i.e., roughly 

between 10 and 35 Hz) when the spectral representations are computed with an 𝑓7 of twice 

𝑓), the 2:1-ratio (left panel of Figure 5.6B). For such an 𝑓7, which roughly equals 20 Hz 

when 𝑓) is 10 Hz, the two dominant frequencies at 10 and 30 Hz are included in the coupling. 

Hence, the inclusion of both frequencies results in a smeared version of PAC. Lowering 𝑓7 

to a 1:1-ratio results in the emergence of multiple disentangled PAC peaks (left panel of 

Figure 5.6C). A focal PAC peak can be observed around 18 Hz with higher harmonics around 

28 Hz. A combination of 𝑓) and 𝑓3 equalling 10 and 18, and 10 and 28 Hz, respectively, 

results in the higher harmonics in the PAC plots. This emphasises the essential role of setting 

𝑓7 in a 1:1-ratio when one is interested in phase-amplitude coupling in a small frequency 

band. The bandwidth size shrinkage following a change from a 2:1- to 1:1-ratio leads to 

PAC-modulation from broad-band smearing across a frequency band to multiple narrowed 

peaks. If 𝑓7 is narrowed even more to a 0.5:1-ratio, no PAC can be detected anymore (left 

panel of Figure 5.6D). Here, 𝑓7 is simply too narrow to include spectral content at dominant 

frequencies at an intermediate frequency.  

 Bicoherence spectrally identifies significant phase-amplitude coupling at the alpha 

rhythm, peaking at 11 Hz (left panel of Figure 5.6E). Bicoherence at this frequency can be 

observed when 𝑓) and 𝑓3 are 11 Hz and 𝑓) + 𝑓3 is constrained to be 22 Hz. As expected, the 

bicoherence peak at 11 Hz is much more prominent than the higher harmonics, which can be 

found at 22 Hz. To identify these higher harmonics for bicoherence, 𝑓) should equal 11 or 

22 Hz with 𝑓3 being the opposite. 𝑓) + 𝑓3 is set to 33 Hz by default in both cases. Compared 

to the PAC-estimates, bicoherence spectrally localised separated peaks, which were evident 

in the PAC-estimates with a 1:1-ratio. Here again, bicoherence is therefore most comparable 

to the PAC-estimates with a filter bandwidth that equals the frequency of the phase 

component. The significance of such coupling is validated by surrogate analyses (right 

column of Figure 5.6).  
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Figure 5.6 – Phase-amplitude 
coupling and bicoherence in the 
human electro-encephalographic 
data. Illustrative coupling estimates 
examples of the electro-
encephalographic data of a single 
participant (channel 17 of subject 8). 
Left-hand plots represent the mean and 
right-hand plots the ratio statistics 
using the surrogate data. (A) Phase-
amplitude coupling (PAC) as a function 
of the amplitude component (𝑓%) and its 
filter bandwidth (𝑓'). The low-
frequency component was fixed at 10 
Hz as this frequency corresponded to 
the power peak in the alpha range. (B-
D) The PAC representations based on 
a broader (2:1-ratio; 𝑃𝐴𝐶 − 𝑓' =
2𝑓$), equalling (1:1-ratio; 𝑃𝐴𝐶 −
𝑓' = 𝑓$), or narrowed (0.5:1-ratio; 
𝑃𝐴𝐶 − 𝑓' = 0.5𝑓$) bandwidth 
underlines the importance of using 
filter settings in a 1:1-ratio. Here, the 
broad-band smearing results in 
merging multiple peaks. (E) 
Bicoherence spectrally localises the 
peaks 11 and 22 Hz like the PAC-
estimates with a narrowed bandwidth. 
PAC: phase-amplitude coupling; 𝑓': 
filter width; 𝑓$: low frequency; 𝑓%: high 
frequency. 
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Empirical local field potential data 

The LFP data yield theta-gamma coupling resembled between 4-8 and 40-100 Hz. An 

example time series and the power spectral density of the LFP data are depicted in fourth 

column of Figure 5.3. Like the simulation and EEG findings, coupling smearing across 

frequencies manifests in PAC when increasing 𝑓7 and fixating 𝑓) (left panel of Figure 5.7A). 

In this case 𝑓) was fixed to 7 Hz. When 𝑓7 roughly equals 𝑓) (i.e., the 1:1-ratio), two 

separated coupling peaks could be identified around 10 and 18 Hz. The coupling at higher 

frequencies (e.g., >40 Hz) is hardly affected by 𝑓7 and does not clearly smear when 𝑓7 is 

increased. When 𝑓7 is higher than the 1:1-ratio (i.e., higher than 7 Hz), a merging of the two 

low-frequency peaks appears at an 𝑓7 that is lower than twice 𝑓). In the extreme case, the 

low- and high-frequency coupling converges into one broad frequency range of coupling 

when 𝑓7 is increased even further, for example, up to four times 𝑓).  

 An 𝑓7 with a ratio of 2:1 to 𝑓) results in broadly-smeared low-frequency coupling 

from 10 to 25 Hz (left panel of Figure 5.7B). If 𝑓7 matches 𝑓) (i.e., the 1:1-ratio), peaks 

around 13 and 20 Hz can be recognised (left panel of Figure 5.7C). Likewise, bicoherence is 

able to localise these two low-frequency coupling peaks (left panel of Figure 5.7E). These 

peaks are around 9 and 16 Hz, and were found to an even larger extent by Sheremet et al., 

(2016) and Sheremet et al., (2019) where cross-frequency coupling was studied using 

bicoherence estimated from LFP data of the rat hippocampus.  

 For both PAC and bicoherence, and as displayed in Figure 5.7A, the coupling between 

40 and 100 Hz does not depend on 𝑓7 and remains unchanged. This component only vanishes 

when PAC is estimated with a 0.5:1-ratio between 𝑓7 and 𝑓) (left panel of Figure 5.7D). 

Statistics between the actual and surrogate coupling reveals significant coupling for 

bicoherence and PAC estimated with the 2:1- and 1:1-ratio, as shown in the representations 

in the right column of Figure 5.7. 
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Figure 5.7 – Phase-amplitude 
coupling and bicoherence in the local 
field potentials data of rats. Illustrative 
examples of the coupling estimates of 
the local field potentials data of a single 
rat (channel 16 of rat 7). Left-handed 
plots represent the mean coupling. 
Right-handed representations show the 
statistics of the surrogate data (i.e., the 
ratios between the coupling and 
surrogate coupling). (A) Phase-
amplitude coupling (PAC) that depends 
on (the bandwidth of) the high-
frequency component (𝑓') while the 
frequency of the low-frequency 
component is set constant. To do so, the 
bandwidth was fixed at 7 Hz (i.e., the 
frequency where most coupling was 
expected). (B-D) When the ratio 
between the phase component 
frequency and bandwidth of the 
amplitude component is set at a 2:1- 
(𝑃𝐴𝐶 − 𝑓' = 2𝑓$), 1:1- (𝑃𝐴𝐶 − 𝑓' =
𝑓$), or 0.5:1-ratio (𝑃𝐴𝐶 − 𝑓' =
0.5𝑓$), the (low-frequency) coupling 
reveals either smeared, non-smeared or 
non-existent PAC. The 1:1-ratio PAC 
establishes two low-frequency coupling 
peaks. (E) These cross-frequency 
coupling peaks are also accurately 
identified by bicoherence. PAC: phase-
amplitude-coupling; 𝑓': filter width; 
𝑓$: low frequency; 𝑓%: high frequency. 
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Conclusion 

Much of the brain's dynamics is related to nonlinear neural activity. Cross-frequency 

coupling measures are sensitive to identify such neural processes. Here, we evaluated the 

phenomenon of phase-amplitude coupling from a bispectral point of view. 

 Our main theoretical finding is that PAC and bispectra are not only related but are 

literally equivalent for an appropriate choice of the filter to estimate the high-frequency 

amplitude, and even then PAC is just a special case of bicoherence. As a mathematical result, 

this finding is an idealisation, and there can still be rather minor deviations in practice for 

several reasons which we would like to summarise: 

• We have shown the equivalence for PAC and bispectra for infinite frequency 

resolution, but frequency resolutions are finite in practice with details depending on 

the implementations. 

• Equivalence is shown when PAC can be expressed as a third-order statistical moment, 

which requires that the low-frequency phase is weighted by the low-frequency 

amplitude. This is not the case in the PAC version presented in Eq. 5.1 where the 

Hilbert transformed signal for the low frequency was normalised to unit amplitude, 

but it is the case for the approach of Osipova et al. (2008) where PAC is defined by 

coherence. Expressing PAC as a third-order statistical moment also requires that the 

coupling to the squared amplitude is studied rather than the amplitude itself.  Here, 

we have only used the squared version of the amplitude component in the example of 

the simulated sawtooth data. 

• Mathematical relations refer only to the numerators of the coupling measures, i.e., 

the bispectra. However, we found in empirical studies that the normalisations do not 

affect the principal finding.  

 Our own implementation of PAC, i.e., coherence between signal and high-frequency 

amplitude at some low frequency, deviated from the above idealisation with regard to all 

three aspects. We still found that results for PAC and bicoherence are always very similar 

using a proper choice of filters for the calculation of PAC.  

 From these findings we can derive some recommendations how to choose filters for 

the calculation of PAC. When cross-frequency phase-amplitude interactions are estimated 

with PAC, filter settings substantially affect the coupling. Although it is already well 
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established that the use of adequate filter bandwidths is critical to estimate PAC accurately 

(Aru et al., 2015; Berman et al., 2012), there is no consensus in terms of the optimal filter 

settings. A recent study recommended to have the bandwidth of the amplitude component at 

least double as large as the low-frequency component (Aru et al., 2015). Here, we showed 

that this recommendation is not trivial from a bispectral perspective. In particular, such filter 

settings hamper coupling estimation when one is interested in neural dynamics within a 

narrowed frequency range. As revealed by both simulation and empirical findings, phase-

amplitude coupling across frequencies is evident in both PAC and bicoherence estimates. 

However, as expected, the PAC dynamics were clearly modulated as a function of the filter 

settings (i.e., the bandwidth of the amplitude component). Specifically, we show that the 

frequency range over which significant PAC can be observed decreases when the bandwidth 

of the high-frequency component decreases. PAC-estimations comprising a bandwidth that 

is twice as large as the low-frequency component results in smearing of the phase-amplitude 

coupling over a broad frequency range. In other words, the spectral resolution of PAC 

substantially decreases when taking a bandwidth of the amplitude component that is too 

large. It then becomes difficult to distinguish wide-band phenomena from higher harmonics. 

Bicoherence and PAC provide comparable results in case the bandwidth of the amplitude 

component is narrowed to match the frequency of the phase component. When the bandwidth 

of the amplitude component decreases even further, the likelihood that carrier frequencies 

are not included increases, meaning no PAC can be observed at all. 

 A further advantage of bicoherence over PAC is that the filtering of the phase and 

amplitude component at many isolated frequencies and frequency bands makes the 

estimation of PAC computationally heavy. In particular, the computation of a sufficient 

number of surrogate data during statistical assessments is time-demanding. In contrast, 

bicoherence is based on the fast Fourier transforms at three isolated frequencies. The latter, 

therefore, has the advantage that there is no necessity to filter signals before coupling 

estimation. We conclude that, although PAC and bicoherence are measures to estimate cross-

frequency phase-amplitude coupling, bicoherence has the advantage that it does not have to 

be estimated with additional pre-processing steps. Likewise, the filter settings of PAC’s 

amplitude component bandwidth should be chosen with precaution and should be equal to 

the frequency of the low-frequency (i.e., the phase) component. This is especially true for 

neural rhythms operating in narrow frequency bands. 
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CHAPTER 6 

 

Epilogue    
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Posture, balance, and locomotion are often seen as easy tasks, arguably because in many 

circumstances we can perform them with little effort. Nevertheless, our central nervous 

system is heavily involved in generating and controlling them. The spinal cord distributes 

neural activity to motoneuron pools indicating its modular organisation. Much of this neural 

activity stems from the cortical motor network and passes several subcortical structures, at 

least in parts, before eliciting spinal modules. I approached the modular organisation via 

muscle synergies. Muscle synergies are believed to be accommodated in spinal premotor 

interneuron circuitries, imposing temporal activation profiles on groups of muscles. Despite 

considerable research into muscle synergies, there are many unanswered questions, some of 

which I sought to answer in this thesis.  

The cortico-spinal tract connects the motor cortex and spinal cord. It is the major 

pathway for cortico-muscular communication in the majority of species despite their 

phylogenetical differences. In humans, motor cortical influences are particularly pronounced 

(Capaday, 2002). The overarching research question I addressed in my thesis was: How does 

the cortical motor activity contribute to muscle synergies in the context of locomotion, 

balance and posture? In these three tasks, I assessed spectral correlations between muscle 

synergy patterns and cortical activity. This entailed a novel analysis of cortico-synergy 

coherence, which quantifies phase locking between neural oscillations in the cortical motor 

network and in muscle synergies. Cortico-synergy coherence was first introduced in 

Chapter 2 and applied to data collected during a postural control task. This study revealed 

prominent coherence signatures when reconstructing broad-band temporal activities of the 

muscle synergies that are employed in the task. Interestingly, next to the motor-related beta-

frequency band, the cortico-synergy coherence was task-modulated in the Piper rhythm, a 

high-frequency component known for its association with multisensory integration. 

In the studies summarised in Chapters 3 and 4, I applied cortico-synergy coherence 

to data collected during locomotion. There, I demonstrated that the involved muscle 

synergies can be discriminated as ones that are coherent with cortical activity and others that 

are not coherent. More specifically, in groups of toddlers and adults, only two out of four 

locomotor synergies showed activity that was synchronous with activity in the motor cortex, 

in particular, in the beta-frequency band. These synergies are dominant during the double 

support phases in the gait cycle. While both age groups displayed this two-by-two synergy 

partitioning with statistical significance, it seemed that the two cortical synergy 
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representations develop further with maturity, an observation on which I will elaborate on 

further below.  

While iso-frequency coherence did (and does) allow for identifying and 

discriminating cortical contributions to muscle synergies, one has to realise that at least two 

frequency bands appeared relevant in the motor tasks employed in this thesis. This triggered 

my work on cross-frequency functional connectivity in Chapter 5. There, I showed that both 

bicoherence and PAC can capture multi-frequency coupling between low-frequency phases 

and high-frequency amplitudes. As such, both measures have the capacity for quantifying 

functional coupling of the cortico-spinal drive. Below I will provide a glimpse on how these 

measures may enter future studies on the contribution of motor cortex in the muscle synergy 

organisation. 

 

Revisiting the research questions 

Q1. How does the motor cortex contribute to muscle synergies during the generation 

and maintenance of locomotion, posture, and balance? 

The cortico-spinal axis may constitute segregated loops to broadcast activity at motor-related 

frequencies to muscle synergies at the spinal cord. According to a model of Aumann and 

Prut (2015), the motor cortex projects to different synergies via distinct loops; however, they 

can be combined to support the control of complex movements. Support for the existence of 

cortico-synergy loops comes from the close associations between the phase shifts of beta 

oscillations and the conduction times based on rhythmic discharges of neuronal populations 

(Cheney & Fetz, 1984; Witham et al., 2011). In this sense, cortico-synergy pathways exploit 

the cell-intrinsic features to form an efficient network for the propagation of neural 

oscillations (Aumann & Prut, 2015). If true, the motor cortex can essentially activate the 

spinal layers accommodating the muscle synergies by single neural commands. 

Starting with my findings on a postural control task, it seems that cortico-synergy 

coherence is prominent not only for beta-band oscillations but also in the Piper rhythm. This 

dual-band coherence was particularly apparent for the muscle synergy consisting of muscles 

that are primarily involved in mediolateral balance control (i.e., tibialis anterior, peroneus 

longus, adductor longus, and gluteus medius).  
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A similar pattern appears during walking; however, two locomotor synergies 

display strong coherence with the cortex while two others rely on subcortical activities. The 

two synergies that are coherent with the motor cortex are both active during the double 

support phases (see Figures 3.1-3.2 and 4.2-4.3). Apparently, the two double support phase 

synergies exchange synchronous neural activity with the motor cortex while the two single 

support phase synergies do not (Figure 4.4).  

Of course, this raises the question of why cortico-synergy beta-band coherence is 

limited to the double support phases. From a biomechanical point of view, the most stable 

gait phases are the periods when both feet are in contact with the ground, i.e., during double 

support, because the body’s centre of mass is mostly inside the base of support and switches 

from the ipsilateral to contralateral leg (Bruijn & Van Dieën, 2018). One may argue that, 

hence, the corresponding muscle synergies play a role in the balance control during 

locomotion. In a neurophysiological sense, assuming gait is unstable during the single 

support phases (i.e., the body’s centre of mass is outside the base of support), super-spinal 

centres can exert control on the legs when both feet are in contact with the ground. Here, I 

would like to note that the association between cortical beta-band oscillations and stabilising 

gait has been suggested before (Bruijn et al., 2015). Yet, it remains to be seen how beta-band 

oscillations are involved in the balance control of gait rather than in gait stability per se. 

Interestingly, the coherent firing of neural populations is not limited to the 

interaction between cortex and (groups of) motor unit pools/motor synergies. Recent studies 

on so-called muscle networks suggest that functional, anatomical, and neural connectivity 

shapes synchronised muscle activity and induces a modular control structure (Kerkman et 

al., 2018; Kerkman et al., 2022). As such it seems that neural synchronisation – in particular 

in the two frequency ranges highlighted in my thesis – is at the heart of the neural 

communication needed to control posture and movements, be that between muscles or 

between cortex and synergies. 
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Q2. How do the locomotor muscle synergies and their interaction with the motor 

cortex develop? Specifically, does the interaction differ between toddlers and 

adults?  

In neonatal stepping, the corresponding EMG waveforms can be factorised into two 

synergies with patterns that are active during the two single support phases (Dominici et al., 

2011). When a toddler walks independently, describing the corresponding EMG requires a 

set of four synergies. It appears that the synergies of neonatal stepping are supplemented by 

two new muscle synergies that are timed to the double support phases (Dominici et al., 2011). 

I showed that the two synergies comparable to the emerging synergies in toddlers were 

indeed the ones displaying significant beta-band coherence with cortical activity. 

This led to the yet to-be-proven theory that this set of synergies emerges because of 

development-related changes in the cortex and cortico-spinal tract. I tested this two-on-two 

grouping of the muscle synergies in independently walking toddlers. As hypothesised, the 

two muscle synergies with patterns active during the double support phases again revealed 

significant beta-band coherence. Even in toddlers with only six months of independent 

walking experience, beta-band signatures are evident in the two emerging synergies. The 

cortico-synergy coherence and these two synergies may ensure that toddlers can successfully 

bring their feet in contact with the ground and walk. Toddlers are able to control and lower 

their foot to get it in contact with the ground (Yang & Gorassini, 2006), while this is absent 

in the immature walking pattern of neonates (Yang et al., 2004). In the latter, the 

corresponding EMG patterns are characterised by two single support phase synergies 

(Dominici et al., 2011). In adult walking, several earlier reports suggested a profound role 

for the motor cortex in dorsiflexor muscles in the leg, since they are important for foot contact 

with the ground (Capaday et al., 1999; Petersen et al., 2001). Taken together, one may 

speculate that the emerging cortico-synergy coherence supports foot-ground contact.  

I further investigated the differences in cortico-synergy coherence between toddlers 

and adults. The coherence sources at the cortex spatially shifted from sensorimotor and 

parietal areas in toddlers to premotor and primary motor areas in adults. This implies that the 

cortical synergy representations undergo reorganisations before being matured in adults. 

Possibly, the neural activity that interacts with the muscle synergies gets generated by 

different cortical regions. Moreover, the beta-band coherence burst at the double support 
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phases became more focal in time in adults. That is, the neural circuitries encompassing the 

cortico-spinal tract also develop further by means of structural and functional reorganisations 

(Eyre et al., 2000). Arguably because of that, individual muscle contributions to these 

patterns become more pronounced (Ivanenko et al., 2013), and the number of muscles that 

contribute gets sparser (Dominici et al., 2011). 

Q3. How can we assess the functional connectivity across different frequencies?  

By now it is evident that cortico-synergy coherence occurs at beta- and Piper-band 

frequencies in walking and in postural control, respectively. Does this mean that the 20-Hz 

oscillations during the double support phases interact with the 40-Hz oscillations involved 

in balance regulation? Conventional coherence estimates will fall short in answering this 

because they are limited to iso-frequency comparison between oscillating units. Therefore, I 

devoted one chapter to bicoherence and PAC and showed that bicoherence does not depend 

on further methodological choices (e.g., filter settings) that dramatically influence the results. 

The latter are essential for disentangling interactions in the aforementioned frequency bands. 

Given this promising finding, one may wonder why bicoherence did not enter my data 

analysis pipeline. After all, constraining two of the three frequencies in bicoherence to beta 

and Piper frequencies can be readily realised. However, further steps are needed to use it in 

the context of EEG-source localisation by means of DICS-beamforming. The bicoherence 

must be maximised at brain sources and one must construct sets of spatial filters, a step that 

went beyond the scope of this thesis but will certainly be addressed in future work. 

Ultimately, this methodological advance will help to clarify whether beta and Piper rhythms 

interact to maintain balance while walking independently. 
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Future experimental outlooks 

While the cross-sectional comparison for toddlers and adults geared profound ideas about 

development-related changes of coherence between the motor cortex and locomotor 

synergies, further support for my conclusions will require assessments along a longitudinal 

design covering the early development of independent walking. As a matter of fact, in the 

course of my doctoral project we already generated preliminary results from 25 babies that 

were measured in a longitudinal study at a maximum of four timepoints: Babies visited the 

lab at five months of age, ten months of age, their first steps and six months after their first 

steps. First steps sessions were recorded within two weeks after a child was able to walk for 

four or more consecutive strides without the need of any physical support. As in Chapter 4, 

four muscle synergies were extracted at every timepoint, with two of them active during 

single support and resembling the ones during neonate stepping. Next to these congenital 

synergies the other two supplementary ones were active during double support and 

expectably emerged at later timepoints. General linear mixed-effects models evaluated over 

the mean responses of the corresponding cortico-synergy beamformers across synergy types 

and timepoints supported this. The Primitive*Timepoint interaction revealed a distinct 

development for the cortical representations of the two synergy sets (Figure 6.1A). 

Coherences with the congenital synergies remained constant over the course of the 

development. While the coherence of the supplementary synergies was comparable to the 

congenital ones for the first two timepoints before the first independent steps, it increased 

for the two later timepoints. The cortical source associated with the Primitive*Timepoint 

interaction appeared to be located at the sensorimotor cortex (Figure 6.1A). This suggests 

that coherence between the sensorimotor cortex and supplementary synergies increases when 

a toddler is able to make its first steps. The coherence increase found around the first steps 

was also reflected in the Timepoint main effect (Figure 6.1B). Also there, the cortical source 

was primarily located at the sensorimotor cortex (Figure 6.1B). Although these are 

preliminary source localisation results, they do indicate that the first independent steps are 

accompanied by an increase in beta-band coherence (Figure 6.1B) and specifically apply to 

the supplementary (emerging) synergies (Figure 6.1A).  
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Figure 6.1 – The synergy-dependent development of the beta-band coherence-based beamformers. 
(A) Two-way interaction Primitive*Timepoint describing the development of the ‘Congenital’ and 
‘Supplementary’ muscle synergy sets for the four timepoints (‘5 months’, ’10 months’, ‘First steps’ and 
‘First steps + 6 months’). Circles represent group averages and are averaged coherence of the voxels 
that yielded the significant effect. The test-statistic of the cortical source of the significant interaction 
is projected on the cortical surface. All statistical models are evaluated with an alpha-level of 0.01 
corrected for false discovery rate. (B) Mean coherences for the main effect ‘Timepoint’ across the four 
age groups independent of synergy type. Mean differences were particularly apparent between the 10 
months and First steps as identified by the post-hoc assessments. This figure is adapted and modified 
from a manuscript that will be submitted to a scientific journal.  

 
Given advances in neuro-imaging technologies over the last ten years, one can also 

consider incorporating optically pumped magnetometers (OPM-MEG) and high-density 

electromyography (HD-EMG) to further improve the spatial accuracy of the cortical areas 

and spinal cord, respectively. Compared to EEG, OPM-MEG has the advantage that 

magnetic signals are not distorted by head tissues (Boto et al., 2018). Although still 

associated with high financial costs, recent studies identified its potential in the use of 

dynamical movement paradigms (Mellor et al., 2021; Seymour et al., 2021). At the spinal 

level, HD-EMG in combination with blind source separation methods allows for 

reconstruction of motoneuronal activity and may therefore improve the spatial resolution to 

identify functional modular networks at the spinal cord (Del Vecchio et al., 2020; Hug et al., 
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2021). HD-EMG has been combined with the EEG-activity (Ibanez et al., 2021), yet, study 

designs have been limited to single muscle assessments so far. Taken together, the 

implementation of these experimental and methodological outlines and potential 

combinations of them will bring us one step closer to decipher how muscle synergies are 

organised within the cortex, and in the central nervous system in general.   

 

Limitations 

In this thesis, coherence served as a prime vehicle to infer cortico-synergy interaction. 

Coherence can be viewed as a correlation measure as a function of frequency. As such, it 

does not provide any information about the direction of coupling. There are several reports 

that cortical oscillations precede those at the peripheral muscles (Mima & Hallett, 1999a; 

Rosenberg et al., 1998). Yet, the estimation of directionality and verification of the 

corresponding time delays from macroscopic recordings is all but trivial, often leading to 

unrealistic values that could not be expected based on the system’s neurophysiological 

properties. In two seminal papers, Baker and co-workers (2003, 2005) revealed that cortico-

muscular coherence most likely intertwines efferent and afferent components. First, in a 

neuropharmacological study, local beta-band synchrony is enhanced at the motor cortex by 

diazepam – a drug increasing the size of inhibitory postsynaptic potentials (Baker & Baker, 

2003). However, the modulation of the coherence spectra was not a mere scaling of the auto 

spectra, emphasising that neural oscillations are not unidirectionally transmitted along the 

cortico-spinal axis. Second, when cooling the forearm the time delay obtained from the phase 

of beta-band coherence is significantly larger than the time delay as measured with 

stimulation responses (Riddle & Baker, 2005). It is hence unlikely that the beta-band 

synchrony is just a reflection of efferent pathways. 
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Concluding remarks 

How does the motor cortex interact with muscle synergies? 

Muscle synergies can be viewed as muscle ensembles that are grouped based on 

spatiotemporal regularities (d'Avella et al., 2003). Experimental assessments of muscle 

synergies usually rely on multi-muscular recordings of EMG waveforms that are 

decomposed based on their co-activations. This approach helped the motor neuroscience 

community to gain insight into the modular organisation of the spinal cord during 

coordinated movements. This does not mean however that the unravelling of the neural basis 

of muscle synergies within the central nervous system has become easy (Cheung & Seki, 

2021). 

Using simultaneous EEG- and EMG-recordings and a combination of two main 

analysis techniques – muscle synergies and cortico-muscular coherence – I provided support 

that signatures of cortical activity are embedded in the muscle synergy patterns or vice versa. 

These signatures appear at beta- and Piper-band oscillations. Cortical areas communicate in 

the beta- and Piper-frequency band with interneuronal and motoneuronal populations at the 

spinal cord, and afferent pathways project back to the spinal cord and sensory cortex. The 

functional relevance was evident when generating and maintaining locomotion, balance, and 

posture. 

The cortico-synergy coherence findings are the first steps into a theoretical 

framework of the disentanglement of neural processes governing muscle synergies. Looking 

forward, many novel research questions await answers including longitudinal assessments 

of the emergence of cortical-synergy coupling and applications of cross-frequency coupling 

methods. My findings on cortico-synergy coherence are merely a humble steppingstone 

towards deciphering the full neural basis of muscle synergies.  
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The central nervous system intrigues us. Despite its complexity it guarantees the control of 

balance and walking with seemingly little effort. Unravelling how the central nervous system 

accomplishes this is a challenging task. Over the last two centuries, a large body of literature 

has established that motor control relies on the recruitment of a low-dimensional organisation 

in the spinal cord. Chapter 1 provides a brief overview of how modular functional units at 

the spinal cord steer groups of muscles. It covers both historical and contemporary views of 

this spinal modularity and highlights the concept of muscle synergies. Anticipating the 

experimental assessments compiled in the thesis, this introductory chapter also emphasised 

the significant role of the motor cortex in establishing motor coordination and provides a 

glance of the central analysis method, namely cortico-synergy coherence.  

Chapter 2 entails an experimental assessment on balance control. It is the first 

study that combines the analyses of cortico-muscular coherence and muscle synergies. It 

revealed prominent coherence between the cortex and muscle synergies for motor-related 

beta-band oscillations (13-30 Hz) and oscillations in the Piper band (~40 Hz). This coherence 

was visible in the cortical motor network, but most pronounced in the paracentral lobule – a 

medial part of the sensorimotor cortex.  

In Chapter 3, the experimental focus shifts to walking. In this study, beta-band 

cortico-synergy coherence turned out significant for two muscle synergies that are 

predominantly active during the double support phases. Two muscle synergies with temporal 

patterns timed to the single support phases did not yield such significant beta-band 

coherence. The maximal coherences of the double support synergies were spatially 

resembled at the sensorimotor areas. The two muscle synergy patterns that did interact with 

the motor cortex resembled those that emerge in toddlers when they start walking 

independently. By contrast, the two muscle synergy patterns without significant cortico-

synergy coherence were very similar to those observed during neonatal stepping. Put 

differently, there may be strong associations between the motor cortex and the two later-

emerging muscle synergies during early walking development. 

In the study underlying Chapter 4 I therefore addressed the functional cortico-

synergy organisation during walking by contrasting independently walking toddlers with 

adults. As expected, this study revealed a clear separation of muscle synergies. In line with 
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Chapter 3, two muscle synergies were coherent to activity in the motor network and two had 

no significant representation in the cortex.  

Given the bipartite frequency cortico-synergy entrainment, in the beta band and 

Piper rhythm, in Chapter 5 I discard conventional coherence as a measure and focused 

instead on relationships across frequencies. In this methodological study, I approached 

connectivity by higher-order statistical moments – bicoherence and phase-amplitude 

coupling – and investigated their pros and cons in simulated and empirical neural data. This 

first assessment paves the way to employ cross-frequency coupling measures in the study of 

walking and postural control. Future studies will incorporate this technique to investigate the 

possible interplay between cortico-synergy coherence in the beta band and in the Piper 

rhythm, which expectably clarifies how independent walking is realised with all its balance 

demands.  

In Chapter 6, I reflect on the applications of cortico-synergy coherence to 

electrophysiological data acquired during motor control tasks. It sketches some experimental 

and methodological outlooks that may shed even more light on the functional relationship 

between the motor cortex and muscle synergies than the earlier chapters do. It also includes 

preliminary findings on a longitudinal study comprising the early walking development of 

muscle synergy representations in the cortex. In line with the preceding studies, a two-by-

two grouping of muscle synergies was found, with the synergies that are coherent with 

cortical activity being those that emerge around the first independent steps. This is clearly a 

promising result but to achieve an encompassing view on how independent walking is 

accomplished, the analysis will need to be extended towards cortico-synergy bicoherence. 

Taken together, this thesis revealed that motor-related brain rhythms manifest in the 

muscle synergies during both postural and locomotor control. It provides support that some 

of the spinally organised muscle synergies do strongly interact with the sensorimotor cortex. 

The corresponding spinal circuitries are hence not regulated locally, at least not to all extent.   
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Het centrale zenuwstelsel intrigeert ons. Ondanks zijn complexiteit garandeert het de 

controle over balans en lopen met ogenschijnlijk weinig inspanning. Ontrafelen hoe het 

centrale zenuwstelsel dit doet is een uitdagende taak. In de afgelopen twee eeuwen heeft een 

grote hoeveelheid wetenschappelijke literatuur vastgesteld dat motorische controle berust op 

de rekrutering van een laag-dimensionale organisatie in het ruggenmerg. Hoofdstuk 1 geeft 

een kort overzicht van hoe laag-dimensionale functionele eenheden in het ruggenmerg 

spiergroepen aansturen. Het behandelt zowel historische als hedendaagse opvattingen over 

deze laag-dimensionale organisatie en introduceert het concept van spiersynergieën. 

Vooruitlopend op de experimentele toetsingen die in dit proefschrift zijn beschreven, 

benadrukt dit inleidende hoofdstuk ook de belangrijke rol van de motorische cortex bij het 

ondersteunen van bewegingscoördinatie en biedt het een blik op de analysemethode die 

centraal staat in dit proefschrift, namelijk cortico-synergie coherentie. 

Hoofdstuk 2 beschrijft bevindingen van een experiment over balanscontrole. Dit is 

de eerste studie die de analysetechnieken van cortico-musculaire coherentie en 

spiersynergieën combineert. Het onthult een prominente samenhang tussen de cortex en 

spiersynergieën voor motorische bèta-band oscillaties (13-30 Hz) en oscillaties in de Piper-

band (~40 Hz). Deze samenhang is zichtbaar in het corticale motorische netwerk, maar het 

meest duidelijk in de paracentrale lobule - een mediaal deel van de sensomotorische cortex. 

In Hoofdstuk 3 verschuift de focus naar lopen. Uit deze studie blijkt dat bèta-band 

cortico-synergie coherentie alleen significant is voor de twee spiersynergieën die 

voornamelijk actief zijn tijdens de fasen wanneer beide benen in contact zijn met de grond. 

De andere twee spiersynergieën met activatiepatronen tijdens de eenbenige contacten 

leverden niet zo'n significante bèta-band coherentie op. De maximale coherenties van de 

synergieën tijdens de dubbele ondersteuningsfase werden gelokaliseerd in de 

sensomotorische gebieden van de cortex. Deze twee spiersynergiepatronen lijken op diegene 

die bij peuters ontstaan wanneer ze zelfstandig gaan lopen. Daarentegen zijn de twee 

spiersynergiepatronen zonder significante cortico-synergie coherentie erg vergelijkbaar met 

die tijdens neonatale stappen. Anders gezegd, er lijken sterke associaties te zijn tussen de 

motorische cortex en de twee spiersynergieën die verschijnen tijdens de vroege 

loopontwikkeling. 
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In de studie die ten grondslag ligt aan Hoofdstuk 4 heb ik daarom de functionele 

cortico-synergie organisatie tijdens het lopen onderzocht van onafhankelijk lopende peuters 

en deze vergeleken met die van volwassenen. Zoals verwacht onthult deze studie een 

duidelijke scheiding van spiersynergieën. In overeenstemming met Hoofdstuk 3 zijn twee 

spiersynergieën coherent met de activiteit in het motorische netwerk en twee hebben geen 

significante representatie in de cortex. 

Omdat cortico-synergie coherentie alleen fasekoppeling kwantificeert voor 

eenzelfde frequentie, focus ik in Hoofdstuk 5 op maten die patronen kunnen identificeren 

tussen verschillende frequenties. In deze methodologische studie benader ik connectiviteit 

met statistische momenten van hogere orde - bicoherentie en fase-amplitudekoppeling - en 

hun voor- en nadelen onderzocht in gesimuleerde en empirische neurale data. Deze eerste 

beoordeling maakt de weg vrij om koppelingsmaten tussen verschillende frequenties toe te 

passen in studies naar lopen en balansregulatie. Toekomstige studies kunnen dergelijke 

technieken gebruiken om de mogelijke wisselwerking tussen cortico-synergie coherentie in 

de bèta-band en in het Piper-ritme te onderzoeken, wat naar verwachting duidelijk maakt hoe 

onafhankelijk lopen wordt gerealiseerd met alle balansvereisten. 

In Hoofdstuk 6 reflecteer ik op de toepassingen van cortico-synergie coherentie op 

elektrofysiologische data die zijn verkregen tijdens motorische controletaken. Het schetst 

enkele experimentele en methodologische visies die nog meer licht kunnen werpen op de 

functionele relaties tussen de motorische cortex en spiersynergieën dan beschreven in de 

eerdere hoofdstukken. Zo beschrijft het hoofdstuk voorlopige resultaten van een 

longitudinaal onderzoek dat de vroege ontwikkeling van spiersynergieën bestudeert in relatie 

tot de cortex. In overeenstemming met de voorgaande studies is een twee-op-twee groepering 

van spiersynergieën gevonden, waarbij de synergieën die samenhangen met corticale 

activiteit degene zijn die ontstaan rond de eerste onafhankelijke stappen. Dit is duidelijk een 

veelbelovend resultaat, maar om een nog uitgebreider beeld te krijgen van hoe onafhankelijk 

lopen wordt bereikt, moeten de focus worden verlegd naar cortico-synergie bicoherentie. 

Samengevat onthult dit proefschrift dat motorische hersenritmes zich manifesteren 

in de spiersynergieën tijdens zowel balans- als loopcontrole. Het beschrijft dat sommige van 

de spinale georganiseerde spiersynergieën sterk interageren met de sensomotorische cortex. 

De corresponderende spinale circuits worden dus niet volledig lokaal gereguleerd. 
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