6 research outputs found

    GPT-4 as an Effective Zero-Shot Evaluator for Scientific Figure Captions

    Full text link
    There is growing interest in systems that generate captions for scientific figures. However, assessing these systems output poses a significant challenge. Human evaluation requires academic expertise and is costly, while automatic evaluation depends on often low-quality author-written captions. This paper investigates using large language models (LLMs) as a cost-effective, reference-free method for evaluating figure captions. We first constructed SCICAP-EVAL, a human evaluation dataset that contains human judgments for 3,600 scientific figure captions, both original and machine-made, for 600 arXiv figures. We then prompted LLMs like GPT-4 and GPT-3 to score (1-6) each caption based on its potential to aid reader understanding, given relevant context such as figure-mentioning paragraphs. Results show that GPT-4, used as a zero-shot evaluator, outperformed all other models and even surpassed assessments made by Computer Science and Informatics undergraduates, achieving a Kendall correlation score of 0.401 with Ph.D. students rankingsComment: To Appear in EMNLP 2023 Finding

    Summaries as Captions: Generating Figure Captions for Scientific Documents with Automated Text Summarization

    Full text link
    Good figure captions help paper readers understand complex scientific figures. Unfortunately, even published papers often have poorly written captions. Automatic caption generation could aid paper writers by providing good starting captions that can be refined for better quality. Prior work often treated figure caption generation as a vision-to-language task. In this paper, we show that it can be more effectively tackled as a text summarization task in scientific documents. We fine-tuned PEGASUS, a pre-trained abstractive summarization model, to specifically summarize figure-referencing paragraphs (e.g., "Figure 3 shows...") into figure captions. Experiments on large-scale arXiv figures show that our method outperforms prior vision methods in both automatic and human evaluations. We further conducted an in-depth investigation focused on two key challenges: (i) the common presence of low-quality author-written captions and (ii) the lack of clear standards for good captions. Our code and data are available at: https://github.com/Crowd-AI-Lab/Generating-Figure-Captions-as-a-Text-Summarization-Task.Comment: Accepted by INLG-202

    Reviving Static Charts into Live Charts

    Full text link
    Data charts are prevalent across various fields due to their efficacy in conveying complex data relationships. However, static charts may sometimes struggle to engage readers and efficiently present intricate information, potentially resulting in limited understanding. We introduce "Live Charts," a new format of presentation that decomposes complex information within a chart and explains the information pieces sequentially through rich animations and accompanying audio narration. We propose an automated approach to revive static charts into Live Charts. Our method integrates GNN-based techniques to analyze the chart components and extract data from charts. Then we adopt large natural language models to generate appropriate animated visuals along with a voice-over to produce Live Charts from static ones. We conducted a thorough evaluation of our approach, which involved the model performance, use cases, a crowd-sourced user study, and expert interviews. The results demonstrate Live Charts offer a multi-sensory experience where readers can follow the information and understand the data insights better. We analyze the benefits and drawbacks of Live Charts over static charts as a new information consumption experience

    Parsing AUC Result-Figures in Machine Learning Specific Scholarly Documents for Semantically-enriched Summarization

    Get PDF
    Machine learning specific scholarly full-text documents contain a number of result-figures expressing valuable data, including experimental results, evaluations, and cross-model comparisons. The scholarly search system often overlooks this vital information while indexing important terms using conventional text-based content extraction approaches. In this paper, we propose creating semantically enriched document summaries by extracting meaningful data from the results-figures specific to the evaluation metric of the area under the curve (AUC) and their associated captions from full-text documents. At first, classify the extracted figures and analyze them by parsing the figure text, legends, and data plots – using a convolutional neural network classification model with a pre-trained ResNet-50 on 1.2 million Images from ImageNet. Next, we extract information from the result figures specific to AUC by approximating the region under the function’s graph as a trapezoid and calculating its area, i.e., the trapezoidal rule. Using over 12,000 figures extracted from 1000 scholarly documents, we show that figure specialized summaries contain more enriched terms about figure semantics. Furthermore, we empirically show that the trapezoidal rule can calculate the area under the curve by dividing the curve into multiple intervals. Finally, we measure the quality of specialized summaries using ROUGE, Edit distance, and Jaccard Similarity metrics. Overall, we observed that figure specialized summaries are more comprehensive and semantically enriched. The applications of our research are enormous, including improved document searching, figure searching, and figure focused plagiarism. The data and code used in this paper can be accessed at the following URL: https://github.com/slab-itu/fig-ir/

    VisText: A Benchmark for Semantically Rich Chart Captioning

    Full text link
    Captions that describe or explain charts help improve recall and comprehension of the depicted data and provide a more accessible medium for people with visual disabilities. However, current approaches for automatically generating such captions struggle to articulate the perceptual or cognitive features that are the hallmark of charts (e.g., complex trends and patterns). In response, we introduce VisText: a dataset of 12,441 pairs of charts and captions that describe the charts' construction, report key statistics, and identify perceptual and cognitive phenomena. In VisText, a chart is available as three representations: a rasterized image, a backing data table, and a scene graph -- a hierarchical representation of a chart's visual elements akin to a web page's Document Object Model (DOM). To evaluate the impact of VisText, we fine-tune state-of-the-art language models on our chart captioning task and apply prefix-tuning to produce captions that vary the semantic content they convey. Our models generate coherent, semantically rich captions and perform on par with state-of-the-art chart captioning models across machine translation and text generation metrics. Through qualitative analysis, we identify six broad categories of errors that our models make that can inform future work.Comment: Published at ACL 2023, 29 pages, 10 figure
    corecore