33,530 research outputs found

    Neural Networks for State Evaluation in General Game Playing

    Full text link
    Abstract. Unlike traditional game playing, General Game Playing is concerned with agents capable of playing classes of games. Given the rules of an unknown game, the agent is supposed to play well without human intervention. For this purpose, agent systems that use deterministic game tree search need to automatically construct a state value function to guide search. Successful systems of this type use evaluation functions derived solely from the game rules, thus neglecting further improvements by experience. In addition, these functions are fixed in their form and do not necessarily capture the game’s real state value function. In this work we present an approach for obtaining evaluation functions on the basis of neural networks that overcomes the aforementioned problems. A network initialization extracted from the game rules ensures reasonable behavior without the need for prior training. Later training, however, can lead to significant improvements in evaluation quality, as our results indicate.

    Helping AI to Play Hearthstone: AAIA'17 Data Mining Challenge

    Full text link
    This paper summarizes the AAIA'17 Data Mining Challenge: Helping AI to Play Hearthstone which was held between March 23, and May 15, 2017 at the Knowledge Pit platform. We briefly describe the scope and background of this competition in the context of a more general project related to the development of an AI engine for video games, called Grail. We also discuss the outcomes of this challenge and demonstrate how predictive models for the assessment of player's winning chances can be utilized in a construction of an intelligent agent for playing Hearthstone. Finally, we show a few selected machine learning approaches for modeling state and action values in Hearthstone. We provide evaluation for a few promising solutions that may be used to create more advanced types of agents, especially in conjunction with Monte Carlo Tree Search algorithms.Comment: Federated Conference on Computer Science and Information Systems, Prague (FedCSIS-2017) (Prague, Czech Republic

    Deep learning for video game playing

    Get PDF
    In this article, we review recent Deep Learning advances in the context of how they have been applied to play different types of video games such as first-person shooters, arcade games, and real-time strategy games. We analyze the unique requirements that different game genres pose to a deep learning system and highlight important open challenges in the context of applying these machine learning methods to video games, such as general game playing, dealing with extremely large decision spaces and sparse rewards

    Improved Reinforcement Learning with Curriculum

    Full text link
    Humans tend to learn complex abstract concepts faster if examples are presented in a structured manner. For instance, when learning how to play a board game, usually one of the first concepts learned is how the game ends, i.e. the actions that lead to a terminal state (win, lose or draw). The advantage of learning end-games first is that once the actions which lead to a terminal state are understood, it becomes possible to incrementally learn the consequences of actions that are further away from a terminal state - we call this an end-game-first curriculum. Currently the state-of-the-art machine learning player for general board games, AlphaZero by Google DeepMind, does not employ a structured training curriculum; instead learning from the entire game at all times. By employing an end-game-first training curriculum to train an AlphaZero inspired player, we empirically show that the rate of learning of an artificial player can be improved during the early stages of training when compared to a player not using a training curriculum.Comment: Draft prior to submission to IEEE Trans on Games. Changed paper slightl

    SAI, a Sensible Artificial Intelligence that plays Go

    Full text link
    We propose a multiple-komi modification of the AlphaGo Zero/Leela Zero paradigm. The winrate as a function of the komi is modeled with a two-parameters sigmoid function, so that the neural network must predict just one more variable to assess the winrate for all komi values. A second novel feature is that training is based on self-play games that occasionally branch -- with changed komi -- when the position is uneven. With this setting, reinforcement learning is showed to work on 7x7 Go, obtaining very strong playing agents. As a useful byproduct, the sigmoid parameters given by the network allow to estimate the score difference on the board, and to evaluate how much the game is decided.Comment: Updated for IJCNN 2019 conferenc
    corecore