
Evolving Neural Networks for the Capture Game

George Konidaris Dylan Shell Nir Oren

School of Computer Science
University of the Witwatersrand, Johannesburg

Private Bag 3, 2050 Wits, South Africa

Abstract

This paper proposes the use of a genetic algorithm to develop neural networks to play the Capture
Game, a subgame of Go. The motivation for this is twofold: to evaluate and possibly improve upon
current genetic algorithm variants in order to produce a good player and (more importantly) to use
this process to examine the properties and processes that are present in evolutionary systems in an
attempt to shed some light on the phenomena that are required for an evolutionary process to produce
robust, perpetually improving individuals and avoid local minima without any outside interaction. A
brief survey of related work in the area is given, which highlights some of the interesting research
questions that remain. This is followed by an outline of a distributed system that has been developed
for use in the experimental evaluation of some of the proposed ideas and some of the initial results
generated by the system.

1 Introduction
Game playing has long been a fertile area for research into Artificial Intelligence. Popular board
games such as Chess, Go, and Backgammon provide simple, elegant and conceptually clean environ-
ments for research into intelligent systems that have both surprising depth and much existing theory.
From early on in the development of AI, board games were considered a good place to start thinking
about intelligence [18], and right from the beginning, machine learning was used in an attempt to
develop good players [17].

More recently, the use of machine learning has produced a world-class Backgammon program
that has, in at least a few cases, produced genuinely novel strategies that improve on current human
practice [20]. Despite the expensive computational process involved, machine learning procedures
that can produce good players are particularly interesting and valuable because the players produced
can be generated without human intervention, and then tested against human expertise. This often
provides insight into the development process as well as the game itself.

This paper proposes that an evolutionary process can be used to develop neural networks to play
the Capture Game, a subgame of Go [12], and that the use of various algorithms and methods can
provide insight into the properties and processes that exist in evolutionary environments that are
capable of evolving complex, dynamic, and robust individuals without falling into local minima.

2 The Capture Game
The Capture Game is a simplified but important version of Go where the first player to capture an
opponent’s piece wins. Although Go is strategically a very complex game, a thorough understanding
of the tactical aspects of the game is usually a prerequisite for the mastery of its strategic subtleties.
The Capture Game is often used to provide beginners with practice that strengthens their tactical
abilities and is capable of producing didactic tactical situations quickly and often.

The Capture Game is usually played on a 9x9 board that is initially empty. The opposing players
(black and white) take turns placing pieces, or stones, of their colour on the board, with the black
player starting. The stones are placed at the intersections of the lines on the board, as shown in
Figure 1, where each players has placed three stones.

SAICSIT 2002 Post-graduate Research Symposium 1



1 2

3

5

4

6

Figure 1: A Capture Game Board

In Figure 1, the black stones 3 and 5 form a group. Two stones are called connected if they are
directly adjacent to each other horizontally or vertically (but not diagonally). A group is a set of one
or more connected stones. In Figure 1, the white stones marked 2, 4 and 6 form a group. In the
Capture Game (and in Go) groups must be captured as a whole, and cannot be split once they are
connected.

In order to capture (or kill) a group, all of the group’s liberties must be removed. A liberty is an
open intersection horizontally or vertically adjacent to a stone in the group – for example, the black
group consisting of the stones 1 and 3 in Figure 2 has 3 liberties (one beneath it and two to its left),
and the white stone marked 2 can be captured if black places a stone on the intersection to its right.

3

1

2

Figure 2: A Typical Capture Game

Stones placed on the edge of the board have fewer liberties than usual (since they have no liberties
to one side), and suicidal moves (placing a stone where it has no liberties) lead to an immediate loss,
unless placing the stone in that particular position results in the immediate capture of an opposing
group.

Although the Capture Game omits much of the strategic subtlety of Go, it includes some of the
concepts in the game that all players must master before they can become good Go players. For
example, in Figure 3, the configuration on the left has an eye.

Figure 3: Groups with Eyes

2 SAICSIT 2002 Post-graduate Research Symposium



An eye is an empty space within a group. The presence of an eye in the group on the left in Figure
3 makes it difficult to kill; white must first surround the entire group, and then place a stone inside
the eye to kill the group – placing a stone inside the eye before surrounding the group would be a
suicidal move. However, there is no way to kill the group on the right in Figure 3 because there is no
way to close both eyes simultaneously. A group that cannot be killed is called an alive group. The
fact that two eyes makes a group alive is one of the first lessons taught to new Go players, and the
Capture Game is often used to reinforce it.

The Capture Game represents a suitable test domain for intelligent system approaches in general
[5], and the evolution of neural networks in particular. While it is significantly simpler than Go (for
which there is no known master-level program [16]) the Capture Game possesses some of the subtlety
of full Go, and hopefully many of the skills useful in the Capture Game are also useful in Go. If so,
a good Capture Game player could be considered an important component of a Go playing agent; or,
alternatively, it could be considered the first step in the incremental development of such an agent.

3 Neuro-evolution
Neuro-evolution refers to the use of an evolutionary process (usually a standard genetic algorithm)
to develop a neural network that performs a given task. Typically, the evolutionary algorithm is used
to determine the connection weights in a fixed-architecture neural network, although in some more
interesting cases the architecture itself or even the combination of architecture and weights have been
evolved [4].

The combination of neural networks and genetic algorithms seems to be a natural fit, because
although neural networks provide a robust and highly distributed form of knowledge representation
that is capable of learning, they are usually not explicitly designed and often generated or learned
[14]. Therefore, the use of a genetic algorithm to “breed” good neural networks would seem to be a
natural way to obtain good networks.

Neural networks have been extensively used to learn to play games [7, 11, 16, 20], partially
because of the natural fit between a fixed network input and a game board, but also because neural
networks are known to be good at pattern matching [14], which is thought to be important in games,
especially complex games such as Go.

However, the use of a genetic algorithm to develop neural networks comes with certain pitfalls,
the foremost of which is that it is often difficult to provide a fitness rating for a network that plays a
game, especially a game like Go, which is very difficult and has no known strong computer players
[16]. Systems where an external, hand-written opponent is used are unlikely to develop players that
are very much better than the given opponent [16] even in more direct learning situations [7]. On
the other hand, systems where the individuals are evaluated directly against each other are prone
to premature convergence [8] when a particularly strong individual dominates the population and
eventually breeds other individuals out.

The problems encountered by researchers when using genetic algorithms to develop complex or
adaptive behaviour are typically solved by a either a process of parameter variations, or the use of ad
hoc methods that seem to work for the problem at hand. One of the issues that this paper proposes
examining is whether or not there are fundamental principles that belong to evolutionary processes
that render them capable of developing complex behaviour in general.

Several surveys of the work in this field, organised primarily around the representation scheme
used, are available for those interested in reading further [3, 4, 21].

4 Related Results
It has already been noted that the use of game playing [18] and learning in game playing [17] is
nearly as old as artificial intelligence research. Unsurprisingly, a considerable body of work exists
on the subject of neuro-evolution. The following two sections present the application of both direct
learning in neural networks and the use of neuro-evolution for game playing and related tasks.

4.1 Direct Learning
The use of more direct learning methods for playing games is perhaps a more intuitive approach to
game playing than the use of a genetic algorithm. Game playing as an illustrative example is used

SAICSIT 2002 Post-graduate Research Symposium 3



in at least one major machine learning text [14], and one of the earliest known example of machine
learning was for the game of checkers [17]. However, two recent results are of particular interest to
the ideas examined in this paper.

The first details the use of reinforcement learning for neural networks learning to play Go-moku
[7]. In this particular case, the networks used external teachers for learning (a random player, a
simple program, and a strong public-domain program). The results indicated that although learning
of this form is feasible, the strength of the learned networks are dependent upon the strength of the
opponents used, and in particular, that “if the opponent of the network selected as the trainer is too
weak, the network does not learn at all, if it is too strong, the network will not be able to reach best
playing quality” [7]. It is clear that removing the need for an external opponent would benefit the
process by removing both a parameter and an external interaction bias factor from the system.

In another recent result, a reinforcement learning method called temporal difference learning
was used to develop a Backgammon-playing neural network that performs near the level of the best
players in the world [20]. Of particular interest is the fact that the network was developed without the
use of an external opponent, and hence was able to contribute genuinely novel strategies at the highest
level of human play. This case makes it clear that although most attempts to use neural networks to
play games are not entirely successful, this is more likely due to weaknesses in the methods used
than the use of neural networks as a learning mechanism.

4.2 Evolutionary Algorithms
There have been several research efforts aimed at using evolutionary methods to produce game play-
ing, and several methods that, although not directly concerning game playing, have potential appli-
cation to the problem.

A direct use of neuro-evolution in an attempt to evolve Go playing neural networks [16] found that
neural networks could be evolved to defeat a simple external opponent. Unfortunately, the external
opponent again imposed a limit on the level to which the networks could play. However, the extent
to which the external opponent influenced play was more pronounced than usual – random noise
had to be added to the opponent in the evolutionary process to prevent the evolved networks from
learning completely specific sets of moves that were able to beat it. This illustrates the tendency that
evolutionary processes display towards the discovery of simple, mechanical solutions which are not
capable of generalisation [22], unless there is significant selection pressure otherwise. However, the
results of the process with the addition of random noise was promising, even though the process was
computationally expensive [16].

A more interesting approach was the use of competitive co-evolution to evolve Go playing neural
networks [11]. Here, the need for an external opponent is removed, because two populations are
maintained: a host population that attempts to learn to play Go, and a parasite population that at-
tempts to learn to foil individuals of the host population. The results of this approach are extremely
promising. In particular, the resulting evolutionary process appears to be open-ended: the population
does converge, but only temporarily, and an “arms race” occurs between the two populations, where
each improvement in a population is followed by a counter-improvement in the rival population. This
ensures that the process does not stagnate, and that it continues to produce promising individuals.

An interesting modification of this idea is the use of enforced subpopulation (ESP) neuro-evolution,
where several populations of neurons (one for each neuron position in a neural network architecture)
are evolved separately [9]. Here, the populations of neurons evolve independently but are evaluated
together, encouraging the evolution of co-operative behaviour. Similar methods have been used for
the evolution of multi-agent systems [22].

Another interesting aspect of evolutionary systems is the use of incremental evolution [9] in
genetic algorithms. In incremental evolution (sometimes called “shaping”) individuals are evaluated
on a number of simple subgoals, as well as the overall goal, with the aim of rewarding behaviour
that brings the agent closer to the overall goal. Incremental evolution is often useful when the goal
behaviour is much too complex to evolve directly, and has been found to be successful in several
applications [1, 15, 22]. As an example of the possible use of incremental evolution for game playing,
the Capture Game could be considered a subgoal of the overall goal of learning to play Go.

The final methodology that will be examined in this paper is the use of the “culture” present in a
neuro-evolution population through the use of culling and teaching [13]. The individuals that form
a population in an evolutionary process carry a significant amount of information about the kinds
of solutions that are viable for the given task. This information can be considered a “culture” of

4 SAICSIT 2002 Post-graduate Research Symposium



problem solving behaviour. In culling, a large number of offspring are produced from each crossover
operation and compared to the current population. Those that seem to behave too differently to
the current population are “culled”, hopefully resulting in fewer degenerate solutions as a result of
crossover. In teaching, new offspring are trained to behave in the same way as their parents before
they are evaluated. Both of these operations are designed for use in an environment where fitness
evaluations are expected to be expensive. An interesting side-effect of teaching is that networks that
are good at learning how to perform well at the given task are evolved, rather than networks that are
good at the given task directly [13].

From the above overview it is clear that a great deal of interesting work has been done relating
evolutionary processes and neuro-evolution. It is also clear that a great deal of work remains to
be done – while many of the interesting methods given above show promise, the reasons behind
their success and their place within the general framework of evolutionary processes are not well
understood.

5 Research Questions
The primary aim of this paper is to establish a basis for future research into several key “question
areas” where there is potential for improvement in current practice. The areas in which future re-
search will take place are examined in the following sections, starting with those that are directly
examinable, and moving towards higher level phenomena which are more complex and may present
observational difficulties.

5.1 Evolutionary Parameters
Typical experiments in evolutionary processes center around the variation of basic parameters (such
as form of crossover, mutation frequency, replacement rates, network size, etc.) and the effects they
have on the resulting process. Although this is a widely covered area, the question of whether or
not varying these parameters during the evolutionary run can introduce some of the higher level
phenomena observed in evolutionary systems (such as arms races or punctuated equilibria) does not
appear to have been extensively explored.

5.2 Genotypic Representation
The representation of neural networks is fundamental to any attempt to understand the process un-
derlying neuro-evolution and the results it produces. It has been suggested that a less direct way of
encoding a neural network representation than simply a concatenation of weights may be the most
successful approach [3].

There are two important aspects to the problem of representation. The first is the distinction
between phenotype and genotype [19], which is the distinction between a genome instance and the
individual that results from the combination of the genome and a development process. In nature,
a genome is more akin to a recipe, providing a set of instructions on how to build a phenotype,
than a blueprint of a phenotype. Various conditions have been proposed for the evaluation of novel
representation schemes [2].

Perhaps more immediately important is the second aspect of representation, which is that of scal-
ability [2]. In any evolutionary system aimed at continuous development the genomes used should
be able to represent an unlimited number of phenotypes, without restricting size or form [19]. This
ability is important both in terms of the differentiation of species which may occur in some evolu-
tionary systems, but also in terms of the flexibility of the process. A process which is stuck with a
single, rigid phenotype form can never do better than is possible in that particular form, and since
experimentation is time consuming, many experiments only consider a small range of the network
sizes and architectures available.

5.3 Lifetime Learning
One of the more interesting areas of research in neuro-evolution is that of lifetime learning. Since
neural networks are capable of learning, it makes sense to use their ability to learn within the evo-
lutionary process. Such hybrid systems, where the broad global genetic algorithm search is comple-
mented by local network learning are a natural and interesting fit [3]. It is possible that selection

SAICSIT 2002 Post-graduate Research Symposium 5



pressure that favours networks that are capable of learning in the environment could result in net-
works that possess the ability to adapt to a relatively dynamic environment.

Another interesting aspect of lifetime learning was demonstrated in an experiment involving
teaching and culling where the network resulting from a crossover between two individuals was
trained to perform similarly to its parents [13]. The resulting network population was no better than
random before training, but was able to adapt to parental training very quickly, yielding a fast and
efficient evolutionary process. There is some potential for the use of similar techniques in simulation,
when the resulting individuals must eventually be used in a real environment.

5.4 Arms Races
An arms race is a situation where two competing species are forced to continually adapt because im-
provements in one species create selection pressure for counter-improvements in the other [6]. Such
a situation creates an ongoing evolutionary process that avoids stagnating in suboptimal solutions for
extended periods of time. In natural systems, arms races are responsible for some of the most striking
examples of the specialisation of predator and prey [6].

Similar ideas have been explored in artificial evolutionary systems [11, 22], although often several
species are evolved in cooperation, rather than competition. However, it is often difficult to frame a
problem in terms of competing species without introducing bias into the process, and therefore this
idea has not been widely explored.

5.5 Incremental Evolution
A more general idea is that of incremental evolution [9]. Here, individuals are not ranked solely
on performance at a single task. Rather, they are ranked using several sub-tasks or abilities that
may prove useful in eventually achieving the goal task. This provides selection pressure for partial
achievement of the goal, which is important in situations where the target behaviour is complex and
unlikely to appear soon.

The artificial addition of sub-goals is problematic in most domains because the target tasks are
typically not well understood or not even well defined. Therefore, the use of incremental evolution
has not been explored in the context of game playing. It is also interesting to examine whether or
not such a reward system can arise naturally in an evolutionary system, perhaps evolving out of
individual mating preferences, rather than being artificially included in the system.

It would also be interesting to evaluate the relative importance of incremental evolution and arms
races. It may be true that arms races are the mechanism by which incremental evolution comes about
in natural system. This is particularly interesting with respect to the idea of punctuated equilibria
[10], where a species converges to a point and then stays there until some change in the environment
forces rapid adaptation. This suggest that the punctuated equilibria found in nature are symptomatic
of incremental evolution forced by the environment.

5.6 Open Ended Evolution
An open-ended evolutionary process is one in which individuals evolve continuously, rather than
prematurely converging on a sub-optimal solution and staying there [19].

The achievement of an open-ended evolutionary system is not an easy goal. No known artificial
evolutionary system has exhibited the capacity for entirely open-ended evolution, although this is not
surprising given the rigid genotype representations usually employed. However, working towards
an open-ended system would be a way to avoid the problem of premature convergence, which has
always plagued artificial evolutionary systems.

There seem to be several methods employed in nature to facilitate open-ended evolution. The
arms race phenomenon is an obvious example of the kind of condition that would preclude either
of the two competing species from stagnating for too long. The dynamic environments typically
encountered in the real world coupled with gradual climate change are another, and the introduction
of adaptive behaviour is yet another. It would seem that an approach that coupled incremental evo-
lution, differentiation and competition, lifetime learning, and a dynamic and complex environment
(or evaluation function) would be the natural way to facilitate open-ended evolution. Whether or not
these are requirements, and whether or not others remain, seems to be an open question.

6 SAICSIT 2002 Post-graduate Research Symposium



6 A Distributed Implementation
An implementation is a precursor for any serious experimental investigation of the questions outlined
above. The initial implementation that is intended to form the basis of future experimentation is
discussed in the following sections.

Simulating the evolutionary processes of nature on a serial computational device puts us at an
immediate disadvantage since the process of evolution is naturally distributed. The sheer number of
evaluations that need to occur in a genetic algorithm that seeks to find a complete (or approximate)
ranking can be very large. Taking nature’s lead, our current implementation seeks to utilise the
natural parallelisability of the problem in making evolutionary experiments feasible.

6.1 The Distributed Architecture
In an attempt distribute the computation as widely as possible we considered the problem of dealing
with the large number of evaluations that need to occur to obtain a ranking of the individuals. A natu-
ral way to handle this is to represent each individual as a separate process on a separate computational
node.However, even if a small population is used, the number of evaluations1 needed in ranking may
be prohibitively large (for example in a round robin tournament the evaluations are Θ(n2) where n
is the number of individuals) in terms of the inter-node communication required. Such evaluations
would need to occur for each generation.

In order to exploit the possibility of using more machines than individuals it was decided to
distribute the evaluations over the computing nodes. Each node thus solves a subset of the number
of evaluations per epoch that are required in ranking.

The ranking of individuals is controlled by a central node, called the Tournament Server. Each of
the computational nodes request blocks of games that need to be played. In reality genome identifiers
specify which individuals need to be played. The node then requests the individual from the pop-
ulation server by using the genome identifier. The individuals are cached at the node since unique
identifiers are given for each genome. The tournament server recognises when it has received all
the results for the current generation and then requests that the population server perform breeding
(cross-over) and mutation. When genomes are mutated they are assigned new identifiers, in order to
avoid cache consistency issues.

Node

Node

Node

Node

Tournament Manager

Genome Request

Genome Requeste
d

Population Server

...

Play Results

Game to be Played

Game Request

Re
qu

es
t B

re
ed

in
g 

& 
M

ut
at

io
n

Po
pu

la
tio

n 
O

rd
er

ed
 o

n 
Ra

nk
in

g

Figure 4: The Distributed Architecture

This “pull” methodology employed allows for the certain degree of robustness especially since the
computational nodes are in our case diskless workstations in undergraduate laboratories, and are thus
prone to being reset. The tournament server caters for such situations by allocating duplicates games
to be played if results are not returned within a reasonable interval.

The Tournament and Population Servers run on a dedicated machine so they do not have to cater
for such perilous conditions. The population is, however, written to disk at the end of each generation

1An evaluation equates to playing two individuals against one another, each playing once as black as once as white.

SAICSIT 2002 Post-graduate Research Symposium 7



as a precaution, and it allows the system to be restarted at any given generation for the purposes of
analysis.

Figure 4 gives an overview of the system. It illustrates that the actual population, kept by the
population server, has been separated from the fitness evaluation. Our working implementation,
however, has both population server and tournament manager running on a single node since a single
machine is capable of running both.

Although the architecture as described is significantly more complex than a standard approach,
the inherent parallelisability of genetic algorithms [14] means that with the increase of nodes there is
almost linear speed up.

6.2 Neural Network and Genetic Algorithm Parameters

There are numerous parameters in any neuro-evolution process that need to be carefully considered
in order to obtain optimal performance. Since the aim of the early experiments performed were for
evaluation of the distributed architecture, some of the choices made may not be optimal. This should
not detract from the usefulness of the experiments.

One difficult question that arises early is that of neural network structure. Since a large number
of network evaluations need to occur, a feed-forward network has an advantage over other structures
which are likely to make evaluation prohibitively slow. Neural networks in existing work with games
of similar complexity have tended to use the standard three-layer feed-forward structure [16, 11],
which is a network with a single hidden layer. It has, however, been suggested that genetic algorithms
seem to perform better with deeper networks [3]. Hence it was decided that a two hidden layers
should be used.

The 81 intersections on the 9x9 board were mapped directly as input to the network. Figure 5
shows the network structure in our current implementation. Note that the second hidden layer feeds
into a single output. During play the network is evaluated for each possible position a stone could
be placed (i.e. all open intersections), and a stone is played where the output reacts strongest. In this
way the output represents the networks preference for placing a stone in a particular location.

Output Layer

Second Hidden Layer

9 9 Board

First Hidden Layer...

...

Figure 5: A Neural Network with Two Hidden Layers.

Simple concatenation was used to encode the network weights as a genome. This results in the
weights of a particular unit being placed closely together. It has been suggested that keeping func-
tional units localised in the genome string produces better results using a standard cross-over operator
than dispersing them[3]. The implementation uses standard cross-over, where better individuals have
a higher chance of mating. Individuals were chosen for mutation without any bias.

8 SAICSIT 2002 Post-graduate Research Symposium



6.3 Implementation Details
Each of the components were implemented using Java. All interprocess communication was achieved
by using the Remote Method Invocation (RMI) feature of the language. Various problems that arose
were conveniently solved using constructs in the language – for example the possibility of dead-lock
was avoided using synchronised functions.

Hidden Total Mean Time Mean Time
Layer Chromosome for for an
Sizes Size a Game Evaluation
(10,10) 920 genes 0.3907s 1.1912 × 10−4s
(80,30) 8910 genes 1.8322s 5.5860 × 10−4s
(80,80) 12960 genes 1.8793s 5.7260 × 10−4s
(100,100) 18200 genes 1.9006s 5.7945 × 10−4s

Table 1: Fitness Evaluation Timing Information

Table 1 shows some timing data collected from the current implementation. The timing details are for
neural networks of various sizes, and they show (as one might expect) that increasing network size
increases time required to play a game. In practice it was found that actual time required to complete a
generation varied greatly from the predicted values. This is most likely because the figures presented
are for only a single node, and hence do not consider the degradation in performance due to increased
network traffic as more computational nodes are added. The network performance is a major factor
when using around 100 machines.

In order to fully utilise the network, requests are granted in blocks. Increasing the block size
decreases the frequency with which nodes return with results since the larger the block size, the
more computation needs to occur between network access. It was found that with a small block
size (around 50 games) the network soon became a major bottleneck. Since our machines are disk-
less workstations, the saturated network resulted in undergraduate students rebooting machines in
an attempt to get faster responses. Block sizes of between 200 and 350 are currently in use, and
performance is much closer to that which was predicted.

7 Initial Results
Although the structure of the neural network has been discussed, the actual size of the layers in the
network has not yet been mentioned. Table 1 indicates that four different sizes were considered.

Initially a network with ten units in each hidden layer was used. Although it had a short evaluation
time, it was found that even after more than a hundred generations little progress towards a reasonable
solution had been made. The network’s play was still close to random, and an analysis of the resulting
individuals showed that the strongest networks were often beaten by fresh mutations, which in turn
were beaten by newer mutations. Additionally, when observing the individuals, it was found that
they played very close to a fixed sequence of moves, and moves made by the opposition were for the
most part completely ignored.

It was expected that since the Capture Game is a conceptually simpler game than Go, the number
of neurons required would be significantly less than the number used in existing implementations
that play Go. Additionally it was hoped that the use of a second hidden layer would make a large
difference. It was clear that more neurons than those provided by the two layers of ten would be
required. After considering the network sizes in existing Go playing networks [11], the layers were
increased to include 100 neurons in each hidden layer.

Since the number of connections had been increased by a factor of about 20, there was a signifi-
cant increase in the computation required. After 70 generations the networks were demonstrating that
the primary problem with the previous representation had in fact been the small number of hidden
nodes. The larger networks responded to their opponent’s moves, although still not necessarily in the
most desirable way.

The computation time required for the larger networks meant that the number of generations had
to be kept small. In an attempt to allow for more generations the number of neurons in the layers
was reduced. This resulted in the two intermediate size networks, neither of which seem to perform
markedly worse than the larger networks after around 50 generations. Figure 6 shows the penultimate
board state during a game between two networks.

SAICSIT 2002 Post-graduate Research Symposium 9



Figure 6: Two networks playing a game

Although none of the networks yet have shown great promise as a Capture Game player, it has been
successfully demonstrated that the current implementation of the distributed architecture is useful
for testing questions about evolutionary methods. Also the Capture Game has been shown to be of
sufficient complexity to make it an interesting domain for further experimental investigation.

8 Summary
This paper examines a number of research areas that are the subject of much ongoing research, and
promise interesting results, centered around the use of genetic algorithms to represent and train neural
networks for game playing. In addition the Capture Game was proposed as a useful test-bed for future
research. We are confident that the relative representational simplicity of the Capture Game, coupled
with its difficulty to master, will provide us with a framework that will be useful in attempting to
answer some of the important remaining questions in evolutionary computing.

The paper also highlighted some interesting research areas for which it is believed that the Cap-
ture Game is a suitable domain for further investigation. It is our belief that the research into the areas
presented will prove fruitful in terms of results and providing insight into evolutionary processes and
how they are able to produce complex, adaptive behaviour.

Finally, a distributed architecture that will make further computational experiments feasible was
presented, along with some early initial results demonstrating that the current implementation of the
architecture functions as desired and is capable of speeding up computational experiments involving
evolutionary processes.

References
[1] David Andre and Astro Teller. Evolving Team Darwin United. In RoboCup, pages 346–351,

1998.
[2] K. Balakrishnan and V. Honavar. Evolutionary and neural synthesis of intelligent agents. In

M.J. Patel, V. Honavar, and K. Balakrishnan, editors, Advances in the Evolutionary Synthesis
of Intelligent Agents, chapter 1, pages 1 – 27. MIT Press, 2001.

[3] R.K. Belew, J. McInerney, and N.N. Schraudolph. Evolving networks: Using the genetic algo-
rithm with connectionist learning. In Christopher G. Langton, Charles Taylor, J. Doyne Farmer,
and Steen Rasmussen, editors, Artificial Life II, pages 511–547. Addison-Wesley, Redwood
City, CA, 1992.

[4] J. Branke. Evolutionary algorithms for neural network design and training. In J. T. Alander,
editor, Proceedings of the 1st Nordic Workshop on Genetic Algorithms and its Applications,
number 95-1, pages 145–163, Vaasa, Finland, 1995.

[5] T. Cazenave. Abstract proof search. In T.A. Marsland and I. Frank, editors, Computers and
Games, pages 39–54, Hamamatsu, Japan, October 2000. Springer.

[6] R. Dawkins. The Blind Watchmaker. W.W. Norton & Company, 1996.
[7] B. Freisleben and H. Luttermann. Learning to play the game of Go-Moku: A neural network

approach. Australian Journal of Intelligent Information Processing Systems, 3(2):52–60, 1996.

10 SAICSIT 2002 Post-graduate Research Symposium



[8] D.E. Goldberg and K. Deb. A comparison of selection schemes used in genetic algorithms.
In G.J.E. Rawlings, editor, Foundations of Genetic Algorithms, pages 69–93. Addison-Wesley,
Redwood City, CA, 1991.

[9] F. Gomez and R. Miikkulainen. Incremental evolution of complex general behavior. Adaptive
Behavior, 5:317–342, 1997.

[10] S.J. Gould and N. Eldredge. Punctuated equilibria: The tempo and mode of evolution recon-
sidered. Paleobiology, 3:115–151, 1977.

[11] A. Lubberts and R. Miikkulainen. Co-evolving a Go-playing neural network. In 2001 Genetic
and Evolutionary Computation Conference Workshop Program, pages 14–19, San Francisco,
California, USA, 2001. Kaufmann.

[12] C. Matthews. Teach yourself Go. Hodder & Stoughton Educational, London, 1999.
[13] Paul McQuesten and Risto Miikkulainen. Culling and teaching in neuro-evolution. In Pro-

ceedings of the 7th International Conference on Genetic Algorithms, San Francisco, California,
USA, 1997. Morgan Kaufmann.

[14] T.M. Mitchell. Machine Learning. McGraw-Hill, Singapore, 1997.
[15] S. Nolfi. Evolving non-trivial behaviors on real robots: A garbage collecting robot. Robotics

and Autonomous Systems, 22:187–198, 1997.
[16] N. Richards, D.E. Moriarty, and R. Miikkulainen. Evolving neural networks to play Go. In

Proceedings of the 7th International Conference on Genetic Algorithms, East Lansing, NI,
USA, 1997.

[17] A. Samuel. Some studies in machine learning using the game of checkers. IBM Journal of
Research and Development, 3:210–229, 1959.

[18] C.E. Shannon. Programming a computer for playing chess. Philosophical Magazine, 41:265–
275, 1950.

[19] T.J. Taylor. From Artificial Evolution to Artificial Life. PhD thesis, Division of Informatics,
University of Edinburgh, 1999.

[20] G. Tesauro. Temporal difference learning and TD-Gammon. Communications of the ACM,
38(3), March 1995.

[21] X. Yao. Evolving artificial neural networks. Proceedings of the IEEE, 87(9):1423–1447,
September 1999.

[22] C.H. Yong and R. Miikkulainen. Cooperative coevolution of multi-agent systems. Technical
Report AI01-287, The University of Texas at Austin, 2001.

SAICSIT 2002 Post-graduate Research Symposium 11


