51,730 research outputs found

    Attentive neural architecture for ad-hoc structured document retrieval

    Get PDF
    © 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM. The problem of ad-hoc structured document retrieval arises in many information access scenarios, from Web to product search. Yet neither deep neural networks, which have been successfully applied to ad-hoc information retrieval and Web search, nor the attention mechanism, which has been shown to significantly improve the performance of deep neural networks on natural language processing tasks, have been explored in the context of this problem. In this paper, we propose a deep neural architecture for ad-hoc structured document retrieval, which utilizes attention mechanism to determine important phrases in keyword queries as well as the relative importance of matching those phrases in different fields of structured documents. Experimental evaluation on publicly available collections for Web document, product and entity retrieval from knowledge graphs indicates superior retrieval accuracy of the proposed neural architecture relative to both state-of-the-art neural architectures for ad-hoc document retrieval and probabilistic models for ad-hoc structured document retrieval

    Neural Networks for Information Retrieval

    Get PDF
    Machine learning plays a role in many aspects of modern IR systems, and deep learning is applied in all of them. The fast pace of modern-day research has given rise to many different approaches for many different IR problems. The amount of information available can be overwhelming both for junior students and for experienced researchers looking for new research topics and directions. Additionally, it is interesting to see what key insights into IR problems the new technologies are able to give us. The aim of this full-day tutorial is to give a clear overview of current tried-and-trusted neural methods in IR and how they benefit IR research. It covers key architectures, as well as the most promising future directions.Comment: Overview of full-day tutorial at SIGIR 201

    Improving Retrieval-Based Question Answering with Deep Inference Models

    Full text link
    Question answering is one of the most important and difficult applications at the border of information retrieval and natural language processing, especially when we talk about complex science questions which require some form of inference to determine the correct answer. In this paper, we present a two-step method that combines information retrieval techniques optimized for question answering with deep learning models for natural language inference in order to tackle the multi-choice question answering in the science domain. For each question-answer pair, we use standard retrieval-based models to find relevant candidate contexts and decompose the main problem into two different sub-problems. First, assign correctness scores for each candidate answer based on the context using retrieval models from Lucene. Second, we use deep learning architectures to compute if a candidate answer can be inferred from some well-chosen context consisting of sentences retrieved from the knowledge base. In the end, all these solvers are combined using a simple neural network to predict the correct answer. This proposed two-step model outperforms the best retrieval-based solver by over 3% in absolute accuracy.Comment: 8 pages, 2 figures, 8 tables, accepted at IJCNN 201

    Neural Architecture for Question Answering Using a Knowledge Graph and Web Corpus

    Full text link
    In Web search, entity-seeking queries often trigger a special Question Answering (QA) system. It may use a parser to interpret the question to a structured query, execute that on a knowledge graph (KG), and return direct entity responses. QA systems based on precise parsing tend to be brittle: minor syntax variations may dramatically change the response. Moreover, KG coverage is patchy. At the other extreme, a large corpus may provide broader coverage, but in an unstructured, unreliable form. We present AQQUCN, a QA system that gracefully combines KG and corpus evidence. AQQUCN accepts a broad spectrum of query syntax, between well-formed questions to short `telegraphic' keyword sequences. In the face of inherent query ambiguities, AQQUCN aggregates signals from KGs and large corpora to directly rank KG entities, rather than commit to one semantic interpretation of the query. AQQUCN models the ideal interpretation as an unobservable or latent variable. Interpretations and candidate entity responses are scored as pairs, by combining signals from multiple convolutional networks that operate collectively on the query, KG and corpus. On four public query workloads, amounting to over 8,000 queries with diverse query syntax, we see 5--16% absolute improvement in mean average precision (MAP), compared to the entity ranking performance of recent systems. Our system is also competitive at entity set retrieval, almost doubling F1 scores for challenging short queries.Comment: Accepted to Information Retrieval Journa

    Content Based Document Recommender using Deep Learning

    Full text link
    With the recent advancements in information technology there has been a huge surge in amount of data available. But information retrieval technology has not been able to keep up with this pace of information generation resulting in over spending of time for retrieving relevant information. Even though systems exist for assisting users to search a database along with filtering and recommending relevant information, but recommendation system which uses content of documents for recommendation still have a long way to mature. Here we present a Deep Learning based supervised approach to recommend similar documents based on the similarity of content. We combine the C-DSSM model with Word2Vec distributed representations of words to create a novel model to classify a document pair as relevant/irrelavant by assigning a score to it. Using our model retrieval of documents can be done in O(1) time and the memory complexity is O(n), where n is number of documents.Comment: Accepted in ICICI 2017, Coimbatore, Indi
    • …
    corecore