CORE
🇺🇦
make metadata, not war
Services
Research
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Community governance
Advisory Board
Board of supporters
Research network
About
About us
Our mission
Team
Blog
FAQs
Contact us
Attentive neural architecture for ad-hoc structured document retrieval
Authors
Balaneshinkordan S.
Kotov A.
Nikolaev F.
Publication date
1 January 2018
Publisher
Abstract
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM. The problem of ad-hoc structured document retrieval arises in many information access scenarios, from Web to product search. Yet neither deep neural networks, which have been successfully applied to ad-hoc information retrieval and Web search, nor the attention mechanism, which has been shown to significantly improve the performance of deep neural networks on natural language processing tasks, have been explored in the context of this problem. In this paper, we propose a deep neural architecture for ad-hoc structured document retrieval, which utilizes attention mechanism to determine important phrases in keyword queries as well as the relative importance of matching those phrases in different fields of structured documents. Experimental evaluation on publicly available collections for Web document, product and entity retrieval from knowledge graphs indicates superior retrieval accuracy of the proposed neural architecture relative to both state-of-the-art neural architectures for ad-hoc document retrieval and probabilistic models for ad-hoc structured document retrieval
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Kazan Federal University Digital Repository
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:dspace.kpfu.ru:net/149508
Last time updated on 07/05/2019