8,861 research outputs found

    Improving energy consumption of commercial building with IoT and machine learning

    Get PDF

    An Overview of Vertical Handoff Decision Algorithms in NGWNs and a new Scheme for Providing Optimized Performance in Heterogeneous Wireless Networks

    Get PDF
    Because the increasingly development and use of wireless networks and mobile technologies, was implemented the idea that users of mobile terminals must have access in different wireless networks simultaneously. Therefore one of the main interest points of Next Generation Wireless Networks (NGWNs), refers to the ability to support wireless network access equipment to ensure a high rate of services between different wireless networks. To solve these problems it was necessary to have decision algorithms to decide for each user of mobile terminal, which is the best network at some point, for a service or a specific application that the user needs. Therefore to make these things, different algorithms use the vertical handoff technique. Below are presented a series of algorithms based on vertical handoff technique with a classification of the different existing vertical handoff decision strategies, which tries to solve these issues of wireless network selection at a given time for a specific application of an user. Based on our synthesis on vertical handoff decision strategies given below, we build our strategy based on solutions presented below, taking the most interesting aspect of each one.Vertical Handoff, Genetic Algorithms, Fuzzy Logic, Neural Networks, AHP

    Graph neural network-based cell switching for energy optimization in ultra-dense heterogeneous networks

    Get PDF
    The development of ultra-dense heterogeneous networks (HetNets) will cause a significant rise in energy consumption with large-scale base station (BS) deployments, requiring cellular networks to be more energy efficient to reduce operational expense and promote sustainability. Cell switching is an effective method to achieve the energy efficiency goals, but traditional heuristic cell switching algorithms are computationally demanding with limited generalization abilities for ultra-dense HetNet applications, motivating the usage of machine learning techniques for adaptive cell switching. Graph neural networks (GNNs) are powerful deep learning models with strong generalization abilities but receive little attention for cell switching. This paper proposes a GNN-based cell switching solution (GBCSS) that has a smaller computational complexity than existing heuristic algorithms. The presented performance evaluation uses the Milan telecommunication dataset based on real-world call detail records, comparing GBCSS with a traditional exhaustive search (ES) algorithm, a state-of-the-art learning-based algorithm, and the baseline without cell switching. Results indicate that GBCSS achieves a 10.41% energy efficiency gain when compared with the baseline and achieves 75.76% of the optimal performance obtained with ES algorithm. The results also demonstrate GBCSS’ significant scalability and generalization abilities to differing load conditions and the number of BSs, suggesting this approach is well-suited to ultra-dense HetNet deployment
    • 

    corecore