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The development of ultra‑dense heterogeneous networks (HetNets) will cause a significant rise in 
energy consumption with large‑scale base station (BS) deployments, requiring cellular networks to 
be more energy efficient to reduce operational expense and promote sustainability. Cell switching 
is an effective method to achieve the energy efficiency goals, but traditional heuristic cell switching 
algorithms are computationally demanding with limited generalization abilities for ultra‑dense 
HetNet applications, motivating the usage of machine learning techniques for adaptive cell switching. 
Graph neural networks (GNNs) are powerful deep learning models with strong generalization 
abilities but receive little attention for cell switching. This paper proposes a GNN‑based cell switching 
solution (GBCSS) that has a smaller computational complexity than existing heuristic algorithms. The 
presented performance evaluation uses the Milan telecommunication dataset based on real‑world call 
detail records, comparing GBCSS with a traditional exhaustive search (ES) algorithm, a state‑of‑the‑
art learning‑based algorithm, and the baseline without cell switching. Results indicate that GBCSS 
achieves a 10.41% energy efficiency gain when compared with the baseline and achieves 75.76% of 
the optimal performance obtained with ES algorithm. The results also demonstrate GBCSS’ significant 
scalability and generalization abilities to differing load conditions and the number of BSs, suggesting 
this approach is well‑suited to ultra‑dense HetNet deployment.

Since 2010, there has been a proliferation of mobile phones and Internet of Things (IoT) devices, and the devel-
opment of advanced mobile applications with differing Quality of service (QoS) requirements for the user. This 
has resulted in a dramatic increase in demand for mobile services leading to a significant increase in base station 
(BS) deployment density of differing types and capabilities to meet the network demand, improve coverage, and 
support a multitude of mobile applications, leading to the formation of ultra-dense heterogeneous networks 
(HetNet). However, such proliferation has significantly increased the environmental and economical burden 
on society. Environmentally, the information and communications technology (ICT) sector must reduce its 
CO2 emissions by 42% by 2030 and 72% by 2040 in line with other sectors to stay within the 1.5 °C global  goal1. 
Additionally, the economical burden of energy cost absorbs between 15% and 50% of the total cellular network 
operational expenses in mature and developing markets  respectively2. These changes all require improvements 
in network energy efficiency towards green and environmentally sustainable radio access networks, which will 
also deliver benefits through the reduction of operational expense (OpEx) reduction while ensuring the mobile 
services.

BSs are the major energy consumers in cellular networks and account for 60% to 80% of cellular network’s 
total power  consumption3. With the development of green radios, different kinds of energy efficiency schemes 
have been proposed, such as engineering higher-efficiency power amplifiers and reducing the transmit power 
while keeping service QoS via efficient scheduling, etc.4 However, the conventional strategy has been to main-
tain constant BS operation even when no active users are using the BS’s coverage, resulting in significant energy 
wastage. As traffic loads of cellular networks show both temporal and spatial variation, load adaptive network 
operation can also be executed such that BSs could be switched off or to operate in low power modes during 
periods of low /no traffic to optimize the energy efficiency, forming another type of power efficiency scheme. 
However, it may not always be feasible to completely switch off BSs in the cellular network architecture due to 
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potential coverage holes that would inevitably downgrade the users’ experience(QoS). Moreover, a sleeping BS 
cannot transmit signals needed by users equipment (UEs) to establish connections such as cell discovery and 
channel  estimation5.

Separating the signals requiring full coverage from those supporting high data rate transmissions, the Con-
trol Data Separated Architecture (CDSA) is a crucial network architecture to the above  challenge5. In CDSA, a 
macro cell control BS (MC) provides constant coverage, general data services, and handles signalling tasks, while 
small cell data BSs (SCs) provide high data rate services to support various mobile applications. By appointing 
an MC to ensure the service coverage and the backhaul connection between the MC and SCs, CSDA brings the 
possibility to switch SCs within the MC’s cover into deep sleep mode without impacting the users’ QoS during 
cell switching operation and traffic load re-association.

Research has been conducted for optimized cell switching solutions in CDSA HetNets, and analytical mod-
els and heuristic algorithms were developed with a priori knowledge of the  environment6–8. However, such 
approaches usually face the NP-hardness solving issue due to the problem formation complexity and compu-
tational overhead for complex scenarios, and have limited generalization capability adapting to the dynamic 
environment of wireless  networks9,10.

In comparison, machine learning (ML) techniques are able to extract knowledge from historical and real-
time collected data for cell switching decision optimization. Reinforcement learning (RL) based algorithms 
can directly optimize cell switching  strategies11–14 while other ML techniques for prediction, classification, and 
clustering are capable of assisting cell switching solutions for improved  performances15–17. Furthermore, deep 
learning techniques utilizing the strong approximation capability of artificial neural networks (ANNs or NNs) 
can accommodate highly complex scenarios by directly learning patterns from the rich datasets generated by 
the communication networks.

In recent years, graph neural networks (GNNs) has received much attention from the research community, 
with GNN’s strong expressive power and generalization ability achieved successes in different research areas such 
as in computer vision, chemistry, and social  networks18,19. It has also been applied to wireless network research 
including traffic prediction, power control, etc.20, as communication networks can be naturally modelled using 
graphs. Compared to existing deep learning-based solutions, GNNs show an advantage of better generalization 
capability through learning the network topology via the graph data structure with node size  invariance21,22. The 
ability of learning the underlying topology on graph structured data can increase dataset utilization efficiency 
and the learning robustness, while node-size invariance is a significant advantage that reduces computational 
and time cost for retraining time after deployment to differing scenarios when compared to other deep learning 
techniques such as deep RL, which needs retraining when the action space size changes. Both advantages make 
GNN a powerful candidate for cell switching decision optimization. However, little research has been conducted 
exploring how GNNs perform in cell switching problems to date.

This paper focuses on a first attempt to develop a GNN-based cell-switching solution for CDSA HetNets 
that can be deployed at each MC of the network to provide cell-switching decisions for SCs within its coverage 
at a system-level in a locally centralized manner. The proposed solution consists of the graph representation of 
individual HetNet units, GNN computational model building, and loss function design for unsupervised train-
ing. The performance of the proposed solution is evaluated using a dataset based on real-world cellular network 
traffic information. The performance results are compared to the theoretical optimal results calculated by the 
exhaustive search algorithm, a state-of-the-art RL-based solution, and the All-on method representing no cell 
switching deployment. Note that although high-level discussions on how the proposed cell switching algorithm 
may be deployed in the cellular protocol stack, this work focuses on the algorithmic development and the detailed 
deployment aspect is beyond the scope of this work. The contributions of this work are summarized as follows:

• A graph representation of a CDSA HetNet unit considering BSs’ traffic loads and power consumption, and 
a GNN-based cell-switching solution (GBCSS) for CDSA HetNets. GBCSS has a much lower computational 
complexity during execution compared to the ES algorithm hence is scalable and tractable for large deploy-
ments for 6G super connectivity.

• The proposed GBCSS is evaluated using a well-established telecommunication  dataset23 that is based on 
real-world call detail record (CDR) information in the city of Milan, making the results more realistic.

• Evaluation results show a 10.41% power efficiency gain using the GBCSS with respect to the baseline without 
cell switching. Compared to the ES algorithm used for upper bound baseline, the GBCSS achieves 75.76% of 
the optimal performance results with less than 0.5% of user QoS sacrificed. In addition, the average energy 
efficiency of GBCSS outperforms that of the other learning-based benchmark algorithm by 11.90%.

• Generalization tests for different date, time, and node size show the GBCSS’ strong generalization ability that 
makes the method highly promising for practical deployments.

Related work
Cell-switching decision optimization must find the best combination of SCs to offload traffic and switch off in 
order to maximize power saving while maintaining user QoS. Such a problem is naturally combinatorial and 
may be formulated as mixed integer programming with multiple sets of variables to consider trade-offs among 
 metrics3 as too aggressive cell switching may lead to user QoS sacrifices when maximizing power saving, while 
too mild cell switching leads to service capacity beyond users’ demands and still causes energy wastage. Various 
approaches exist in the literature to implement cell switching optimization in CDSA HetNets for energy opti-
mization. These methods can be broadly classified to heuristic algorithms and ML-based direct cell switching 
decision-making (mainly RL-based). Some research also developed multi-tier solutions combining heuristic algo-
rithms with ML methods, or developing combinations of different ML methods (e.g. supervised learning and RL).
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For heuristic algorithms, the exhaustive search (ES) algorithm ensures to produce the optimal cell switching 
results by traversing the whole search space to find the best SC combination(s) based on the objectives while 
satisfying the constraints. However, the complexity of this algorithm grows exponentially and is only practical 
to apply to small search  spaces12. To improve the search efficiency towards an optimal solution, a suboptimal 
greedy SC on/off strategy was proposed  in6 to determine the SC switching patterns for a BS cluster in a green 
ultra-dense HetNet. This greedy heuristic algorithm tried to maximize the network energy efficiency while 
considering traffic load of the SCs and user QoS requirements. Similarly, a firefly algorithm was developed  in7, 
where joint optimization of the area spectral efficiency and energy efficiency was formulated to determine the 
optimal system parameters for a two-tier ultra-dense HetNet. Moreover, a cooperative energy optimization 
scheme for 5G ultra-dense HetNet using graph theory was proposed  in8, where a graph representation of the 
network was first developed, followed by applying graph theory to determine the order of SC nodes to which 
power-off/on procedures are applied.

Heuristic algorithms are hard-coded with limited generalization ability, and recurrent applications are often 
required when network conditions change significantly. To tackle such challenges, some recent research devel-
oped ML-based solution. For example, a dynamic SC load adjustment algorithm was proposed  in11 that used 
Q-learning to train an optimal offloading and load-balancing policy to switch off redundant SCs in an ultra-
dense HetNet. A distributed Q-learning technique was utilized  in13 that modelled each SC as an agent jointly 
learn to choose the best sleep modes in a multi-sleep-mode HetNet setup, in order to maximize the network’s 
energy efficiency. However, such tabular RL methods require a large state-action table (or Q-table) to represent 
the optimal policy when the HetNet scale rises, which leads to considerable memory consumption. As a results, 
approximation-based RL algorithms become a promising candidate, such as the SARSA algorithm with linear 
function approximation proposed by Ozturk et al.12. Deployed for online training and execution in an ultra-
dense HetNet, the feature space of the SARSA algorithm contains all BSs’ traffic loads with the total network-wise 
power consumption for optimal binary cell switching policies for SCs. Another approach is to exploit the strong 
approximation capability of ANNs, such as the work of Zhang et al. who developed a double deep Q-network to 
determine the optimal sleeping strategy in a heterogeneous radio access  network14. The algorithm was trained 
and tested using real-world traffic data to minimize the energy consumption of the HetNet while maintaining 
the user QoS within the network.

If multi-tier solutions are considered, some research combined ML methods to boost the performance of 
heuristic algorithms, or to reduce the problem search space and hence the overall problem complexity. Abubakar 
et al. proposed a two-tier cell switching based on unsupervised learning and the ES  algorithm15. Their solution 
first separated an ultra-dense HetNet into different clusters using the K-means algorithm, after that the ES algo-
rithm was executed for each cluster to get optimal local cell-switching decisions. A long short-term memory 
recurrent NN (RNN) model was utilized by Jang et al.16 to predict user traffic for the next few time slots of the 
network. Based on the predicted traffic, a Lyapunov optimization problem was formulated to obtain the cell-
switching decision to balance between the reduced power consumption and the predicted traffic loads.

Moreover, different learning-based techniques can be jointly utilized for cell switching decision making, 
such as the work  in17 that first combined convolutional NN and RNN to leverage the geographical and semantic 
spatial-temporal correlations of mobile traffic for future traffic prediction. After that, the cell switching problem 
was modelled as a Markov decision process and solved by the deep deterministic policy gradient method, a 
deep RL algorithm.

Different learning-based solutions have been proposed in the literature for cell switching optimization, while 
GNN techniques received little attention although with strong expressive capability and explored to be effective 
in solving a similar problem of link  scheduling22,24. For instance, Lee et al.24 proposed a graph representation 
design for device-to-device communication and utilized graph embedding combined with neural networks to 
learn an optimal link scheduling decision without requiring channel state information. Their performance results 
showed that graph representation learning is competitive in performance optimality, generalization ability and 
scalability. However, their design centered around communication links cannot be directly adapted to the cell 
switching use case, which also motivated our work to explore GNNs on cell switching.

Following the advantages covered in Introduction, GNN has the following advantages over other learning-
based techniques for the cell switching problem: GNN learns on graph-structured data, which include relation-
ship information among modelled BSs, which is absent from other techniques while being useful to the NN 
model to learn the features with extra information and hence reduce the training epochs; GNN is capable of 
being extended to different-sized network without the need of retraining, which considerably reduces the cost 
for deployment to different HetNets compared to other learning-based techniques such as deep Q-learning.

Consequently, this work in our paper chose to explore a GNN-based optimal cell switching solution using 
unsupervised training approach. The proposed solutions consists of a graph representation of the considered 
system model, followed by GBCSS, an end-to-end GNN offline training and online execution design. The per-
formance of the proposed GBCSS is evaluated using real-world traffic data to generate more realistic results.

System model and problem formulation
Network architecture and power consumption model. This work considers an ultra-dense HetNet 
with a CDSA  architecture5, formulated by multiple HetNet units comprising of one MC and multiple SCs of dif-
ferent types within the coverage of the MC. For each HetNet unit as shown in Fig. 1, the MC serves as the control 
BS for signalling, and provides constant coverage and data services, while the SCs only handle data services 
based on user specific requests for network capacity enhancement. The MC also acts as a centralized controller 
within its coverage area for switching SCs in/out of sleep mode and for traffic offloading. This task contains traf-
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fic load observations on all local SCs, and decision making on the set of SCs that should be switched into sleep 
mode during periods of low traffic intensity, with the available capacity of the MC also taken into consideration.

Using the above system model, the instantaneous power consumption of a HetNet unit Ptot containing 1 MC 
and NSC SCs (SCs’ BS types implied) in a CDSA HetNet is given by:

where PiBS is the power consumption of the ith BS ( BSi ) in the HetNet unit, BS type implied, while PMC and PiSC 
denote the power consumption of the MC and the ith SC respectively.

Derived from the Energy Aware Radio and neTwork tecHnologies (EARTH) power consumption  model25,26, 
the calculation of PiBS for every BS type is expressed as:

where Pio , Pis are the static operational and sleeping power consumption respectively, and �i
p is the slope of the 

load-dependent power consumption. Pitx is the transmission power that is proportional to the maximum trans-
mission power Pimax based on a BS’s factorized traffic load, expressed as:

where �it ∈ [0, 1] is BSi ’s factorized traffic load at time step t, defined as:

where dit represents the radio resources of BSi utilized by its served users at t, and Ci is the radio resource capac-
ity of BSi.

It is also assumed that BSs of a given type (e.g. all micro BSs) are configured with identical hardware for this 
general problem formation, such that every type of BSs will have constant Pio , Pimax , and �i

p . Therefore, BSi ’s 
power consumption PiBS depends only on its traffic load �i and BS type. For real-world applications, values of 
these parameters can be specified based on individual BS setups.

Problem formation. Following the above system model, the goal is to determine the optimal BS switch-
ing strategy (i.e. the optimal set of SCs to switch on/off) for each time slot t (in minutes) in a given time period 
T (in minutes), to minimize energy consumption while maintaining user QoS in a HetNet unit. The switching 
strategy at t is defined as Ŵt = {γ 1

t , γ
2
t , . . . γ

NSC+1
t } , where γ i

t ∈ {0, 1} indicates the switching decision for BSi at 
t, 1 for ON and 0 for OFF. In this work, the MC of each HetNet unit is defined to be at index 1 ( BS1 ), and should 
be always be ON according to its functionality, i.e. γ 1

t = 1,∀t ∈ T.
By deciding the switching strategy Ŵt at each time slot t, a traffic re-association stage is carried out before 

the cell switching execution, during which the MC takes the traffic loads from, or allocates traffic loads to an SC 
within its coverage if that SC was switched to sleep mode or brought back in service, i.e. moving di from BSi to 

(1)Ptot =

NSC+1
∑

i=1

PiBS = PMC +

NSC
∑

i=1

PiSC

(2)PiBS =

{

Pio +�i
pP

i
tx , 0 < Pitx ≤ Pimax

Pis , Pitx = 0

(3)Pitx = �
i
tP

i
max

(4)�
i
t =

dit
Ci

Figure 1.  A CDSA HetNet unit consisting of a MC and densely deployed SCs within the coverage of the MC, 
SCs can be of type Remote Radio Head (RRH), Micro, Pico, and Femto BSs according  to25.
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BS1 , where i  = 1 . However, as SCs and the MC may have different capacities, it is essential to consider such dif-
ference for traffic re-association when using the factorized traffic loads � during this process. To represent such 
capacity differences, φi is introduced as the ratio of BSi ’ capacity to that of BS1 (the MC). Note that φ1 is always 
1 as it means the MC’s capacity comparing to itself:

Therefore, for BSi (i  = 1) , φi�it =
Ci
C1

×
dit
Ci

= di
C1

 represents the factorized traffic load of this BS with respect to 
the capacity of BS1 (the MC), and the original factorized sum traffic load �t at time slot t before executing cell 
switching Ŵt can then be defined as (6). Note that �t is based on the capacity of BS1 (the MC):

Moreover, each BS’ traffic load after re-association and cell switching can be calculated as follows, starting with 
BS1 (the MC):

and for all SCs (for i ≥ 2):

where �it and �̂it are the traffic loads of BSi at time slot t before and after the execution of traffic re-association 
and cell switching.

Note that after the cell switching execution, BSi ’s power consumption PiBS will also change to P̂iBS upon �it 
changes to �̂it . Following Eq. (2), P̂iBS is hence calculated as:

The factorized sum traffic load after cell switching �̂t of the HetNet unit is then defined as (10). It is noteworthy 
that �̂t ≤ �t as switching off SCs after the MC reaches its capacity ( ̂�1t = 1 ) will lead to sacrifices of the original 
traffic loads:

Denote P̂tot as the energy consumption of the HetNet unit after executing Ŵt , the optimization objective is hence 
to choose an optimal Ŵt for the HetNet unit to maximize the energy efficiency for all t ∈ T , i.e. to minimize 
P̂tot while maximizing �̂t (to maintain �t as much as possible and thus preserve the original user QoS) in the 
HetNet unit. Combining (1), (9), and (10) this optimization can be formulated as follows, with NSC independent 
variables ( γt ∈ Ŵt ) and two constraints:

where Eq. (11) defines the optimization objective to minimize a HetNet unit’s power consumption P̂tot(Ŵt) given a 
switching decision Ŵt at time slot t. Equation Eq. (12) defines the optimization constraints where �̂(Ŵt) is defined 
by (10), which is calculated as the sum of all factorized loads of local BSs with respect to the MC’s capacity. �̂it 
denotes BSi ’s load factor after switching, as defined above.

Note that the optimization constraint maxŴt �̂(Ŵt) has an upper bound of �t which is the original traffic 
load of the HetNet unit at every time slot before executing cell switching as discussed above. Moreover, the 
value of �̂it should be between 0 and 1 to not exceed a BS’s capacity at each time slot after switching following 
the definition of �.

Although the formulated cell switching optimization problem appears to be not complicated, it is a min-max 
trade off problem that needs to consider both the MC’s and all SCs’ traffic loads within a HetNet unit, while also 
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needing to take the power consumption of different SC types into account (e.g. 4 SC types are considered in the 
experiments covered in this work as in Table. 1), which is not directly presented in Eq. (11). Therefore, the search 
space for an optimal cell switching decision is much larger with a highly complex underlying scenario, especially 
for a large number of SCs. As Ŵt is a discrete set of binary values, the defined min-max optimization is naturally 
combinatorial, with 2NSc possible combinations for every time slot t for a given HetNet unit.

Such combinatorial optimization can be considered as a variation of the Knapsack problem, which is a 
well-known NP-hard12,26,27. The Knapsack problem considers a set of Nobj indivisible objects with integer labels 
id = 1, 2, . . . ,Nobj . Each object is associated a real number value vi and a positive real number weight wi . The 
goal of the problem is to select a subset of these objects to achieve a maximum sum value while the maintaining 
the total weight within W units, and the mathematical formulation of the problem expressed as: find oi , such that

where the objective function (13) can be directly related to the cell switching objective (11) after transforming 
the minimization in (11) to a maximization form by treating BSs’ power consumptions as negative values, with 
the binary Knapsack decision oid representing γi . As for the constraint, the �̂t ≤ �t part of (12) represents the 
Knapsack constraint in (14), while an additional maximization is added in the formulated cell switching problem, 
making the cell switching problem overall a variation of the Knapsack problem.

Cell switching via graph representation learning
GNN models learn on data represented by the graph data structure. Formally, a graph g = (Vg ,Eg ,Xg ,Ag ) is 
composed of a set of vertexes/nodes Vg and a set of edges/arcs Eg connecting pairs of  nodes28. When the node 
pairs in g are unordered, g is referred to as an undirected graph, while ordered node pairs in g make it a directed 
graph. To enrich the graph g, additional node and edge information can be included in Xg and Ag respectively. 
Each node v ∈ Vg is associated with a node feature xv ∈ Xg , while an edge (u, v) connecting a pair of nodes 
u, v (u  = v) holds an edge attribute auv ∈ Ag . A graph is a powerful data structure to model a set of objects (as 
nodes) and their relationships (as edges).

Following the general GNN design  pipeline29, this section presents the GBCSS from the following aspects: 
graph representation design, GNN computational model building, and learning task confirmation with loss 
function design.

Graph representation of a HetNet unit. Omitting the wireless communication links, the network 
architecture described in Fig. 1 can be expressed as the system model shown in Fig. 2a, where SCs within the 
MC’s coverage are connected to the MC through the backhaul. For cell-switching, each BS (SCs and the MC) 
contains the essential information regarding their current traffic load � and instantaneous power consumption 
PBS , which is sent to the HetNet unit’s local controller located at the MC. Additionally, the type of each SC (e.g. 

(13)max

Nobj
∑

id=1

oid · vid ,

(14)
s.t.

Nobj
∑

id=1

oid · wid ≤ W ,

oid ∈ {0, 1}, id = 1, 2, . . . ,Nobj .

Figure 2.  The proposed graph representation process (a) System model. (b) Graph representation model. Note 
that superscripts are for indexing purpose to match the notations in problem formation.
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micro or pico) should also be known by the local controller. For each time slot, the local controller decides the set 
of SCs to offload and switch off according to the received information, and then the MC sends the corresponding 
control signals to the SCs.

The proposed graphical modeling of the system model in Fig. 2a starts with treating each BS in the HetNet 
unit as a node, with the BS’s traffic load � modelled as the node feature xv , while the power consumption PBS of 
each BS is treated as the edge attributes a1,v that connects the BS at node v and the MC at node 1. Following the 
above modeling, Fig. 2b demonstrates the proposed graph representation model. The neighbor design of this 
model is based on the system-level assumption that an SC sends it current load and power consumption data via 
the backhaul to the local controller deployed at the MC for cell-switching decision making. Note that the traffic 
loads and power consumption of the MC should also be sent to the local controller, hence another edge is added 
to the proposed graph design connecting the MC node to itself. Additionally, edges in this graph representation 
model are designed to be directed from each SC node to the MC node following the above information flow. 
For example, the edge connecting node BS3 and node BS1 has the direction of BS3 → BS1 , and this directed edge 
hence is denoted as (−−−−→BS3,BS1) . Directionality reflects that different BSs have differing power consumptions based 
on the BS types and traffic loads. If an undirected graph representation is used, an edge feature is then shared 
by its connected node pair, which is not suitable to represent this differentiated power consumption and thus 
the relationship between an SC and the MC. Therefore, the directionality also allows distinct edge weights to be 
utilized by the graph convolutional operator introduced in the following section. The node and edge sizes of the 
proposed graph representation model are both identical to the total number of BSs within a HetNet unit (e.g. 
tens to hundreds) and thus denoted as n.

This graph representation should be considered as a dynamic graph; after cell switching, the state of all node 
and edge features change to x̂v and âu,v , following the change of � to �̂ and the resultant PBS for all BSs calculated 
by Eqs. (7), (8), and (2). It should be recognized that other graph representation designs may have differentiated 
learning outcomes combined with different GNN models. However, investigating the performance of different 
modeling designs is beyond the scope of this paper.

GNN computational model for cell‑switching. The graph g serves as the underlying topology for a 
GNN backbone, and is taken as the GNN’s input. The GNN then learns and produces a state embedding for each 
node in g, containing the node’s own information and its neighborhood. Specifically, the GNN processes the set 
of node features Xg through a sequence of L hidden ANN layers, where at each layer l ∈ {1, . . . , L} , the feature 
vector xv of each node v ∈ Vg is updated as:

where µl�·� is a parametric combination function (operator) with learnable parameters that are updated by 
the objective (loss) function’s gradients through the ANNs’ backpropagation. The variable u ∈ Vg , u �= v is a 
neighboring node of v within g, such that u and v are connected by edge (−→u, v) , and eu,v ∈ Ag is the attribute of 
edge (−→u, v) . When l = 1 , xl−1

v = x0v , which denotes the original node features Xg . After all L layers, the resulting 
output feature xLv  is the node embedding of the original graph g. This work utilizes the local extremum operator 
(LEConv) proposed  in30 for µl , which finds the importance of nodes with respect to their neighbors using the 
difference operator, and thus benefits from the distinct edge weight of directed edges. The combining function 
in Eq. (15) for LEConv is expressed as:

where ψl�·� represent the activation function of layer l, which is a configurable hyperparameter providing non-
linearity, while �l−1

1 ,�l−1
2  , and �l−1

3  denote different learnable parameters.
The main objective of cell-switching is to find the optimal strategy Ŵt at every time slot to determine the best 

set of SCs to switch on or off to increase energy efficiency. Therefore, the node features after node embedding will 
be passed through a final output layer with another parametric function that maps xLv  to binary values γv ∈ {0, 1} , 
while this function needs to be continuous to calculate gradients for GNN’s backpropagation. The solution is 
to first have a function ��·� that maps xLv  to the continuous values ranging between [0, 1] to provide the final 
output of the GNN, followed by another function mapping such continuous GNN output values to binary ones. 
In practice, ��·� can be implemented using another NN layer whose activation function has an output range of 
[0, 1], and hence is another configurable hyper-parameter of the computation model for the GBCSS. The value 
discretization can be achieved by the indicator function I[0.5,1]�·� that near-evenly maps the continuous values 
from [0, 1] to binary values {0, 1}.

Complexity. As the problem given in (11) is an NP-hard problem, it does not have a deterministic polyno-
mial-time solution. However, since it is a combinatorial optimization, its optimal solution can be found with 
an exhaustive search algorithm which iterates through every possible option in the search space. Therefore, it is 
highly computationally demanding, and since in the cell switching problem has every SC has two possible states 
(ON and OFF), the total number of state combinations is 2NSC which is the steps required for the exhaustive 
search to find the optimal ON/OFF switching combination.

In contrast, the presented graph representation modeling and GNN computation model aims to reduce the 
overall computational complexity. With both graph representation and GNN computation model introduced in 

(15)xlv = µl�x
l−1
v , {xl−1

u , eu,v}�

(16)
xlv = ψl��

l−1
1 xl−1

v +
∑

(
−→u,v)∈Eg

eu,v(�
l−1
2 xl−1

v −�l−1
3 xl−1

u )�
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previous sections, the forward inference of GBCSS procedure is summarized in Algorithm 1, which is a high-
level abstraction of the actual implementation using previously introduced notations, to mainly help analyze 
the algorithm’s complexity.

Algorithm 1: Feed-forward inference for the proposed GBCSS at time slot t

Step 1 of the algorithm denotes the graph data creation according to the graph representation design, which 
can be treated as a linear function that maps the input PHetNet and �HetNet to graph-structured data, hence its 
overall operation steps grows linearly to NSC . Step 2 to 8 mimic the computational flow of the GNN computa-
tion model and step 9 represents the value discretization introduced in the above section. Step 2 to 7 represents 
the graph embedding using the LEConv convolution operator and has in total L× (NSC + 1) operations. Step 8 
indicate the linear output layer which essentially performs a linear transformation before passing to the activa-
tion function ��·� , while step 9 simply pass the output of step 8 to the indicator function I[0.5,1]�·� to produce 
binary output Ŵt . Both activation functions apply to the input element-wise so their total number operations 
grows linearly to NSC.

Define N = NSC + 1 being the total number of BSs in a HetNet unit and thus the number of nodes in the 
graph representation. The complexity of exhaustive search is then O(2N−1) according to the above discussion. In 
comparison, most operations occur during step 2 to 7 for the GBCSS which is L× n , with other operations being 
linear. Moreover, the number of neurons for all NN layers will also impact on the overall number of operations. 
However, L will be a constant for a defined GNN model, and each NN layer’s number of neurons will also be a 
constant upon definition. Therefore, GBCSS’ complexity is bound to O(N) , which is linear to the total number 
of BSs in a HetNet unit as introduced in the graph representation. Therefore, this complexity will not lead to a 
large computational burden compared to the Exhaustive Search algorithm with O(2N) that grows exponentially 
with respect to the total BS number.

Training and loss function design. The parameters of the GNN computation model can be trained in 
either supervised or unsupervised learning  manner22. For supervised learning approach, it is essential to obtain 
high-quality labelled samples indicating the optimal cell-switching decisions for each input graph g. How-
ever, exhaustive search that always generates the optimal solutions has the complexity of O(2N) , and hence it 
is impractical to generate a dataset with sufficient optimal cell-switching samples as the node size increases (e.g. 
above 20 nodes). In contrast, other methods cannot always guarantee to produce optimal cell-switching deci-
sions for labelled samples, which may hinder the overall learning performances.

Therefore, this research proposed an unsupervised learning approach to train the proposed GBCSS. Assuming 
a batch of B unlabelled samples of a HetNet unit’s graph representation g. The designed loss function L is given by

where ζj,g is the objective function for the jth sample of graph g in the data batch. L aims to directly tune the 
GNN model to optimize the objective functions in Eqs. (11) and (12). Derived from the calculation of Ptot (Ŵ)

�(Ŵ)
 , 

ζj,g indicates the system-wise power consumption per unit traffic load for the graph representation after cell-
switching, following the cell-switching decisions from the GNN outputs. The calculation of ζi,g is given by:

where ζj,g (�〈xLv 〉) denotes the loss ζj,g following the cell switching decision represented by the GNN output 
�〈xLv 〉 ; x̂v and âv,1 are the node and edge features after cell-switching, following the calculation of Ptot , �̂ and � , 
as described in the problem formation and graph representation. Note that âv,1 is used instead of a general nota-
tion âv,u since all edges are defined to connect an SC node to the MC node at index 1, according to the proposed 

(17)L = −
1

B

B
∑

i=1

ζj,g

(18)ζi,g (��xLv �) =
∑

v∈Vg

x̂v

âv,1
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graph representation. The system requirement that the MC should always be switched on is also learned by the 
GNN, as the magnitude of L will become very large when the output label of the MC node is OFF, due to a 
substantial decrease of �.

Evaluation configurations
This section covers the experimental setups and related configurations of the performance evaluation for the pro-
posed GBCSS. The experiments use the EARTH power consumption  model25 and compares the performance of 
GBCSS with other cell-switching benchmarks under various metrics. The power consumption characteristics for 
each types of BSs are summerized in Table 1. For a real-world CDSA HetNet cell-switching scenario, it is natural 
to consider a set of BSs at fixed geographic locations that experience traffic variances at different time slots of a 
day and across different days, which is an essential assumption for the experimental configurations in this paper.

For the deployment of GBCSS, it is assumed that the algorithm is implemented at the local controller located 
at the MC for every HetNet unit in a locally centralized manner, along with all other benchmarking algorithms. 
At each time slot t, all SCs in operation send their factorized traffic load and power consumption measurement 
to the MC via the backhaul for cell switching measurement, while that of the MC will be directly available at 
the controller due to where it is deployed. For sleeping SCs, the traffic load will naturally be 0, and the power 
consumption will be the sleeping power for their corresponding BS types, which is known at the MC upon 
initial deployment. The “measurement” from sleeping SCs can be filled by the MC after receiving all operating 
SCs’ measurement reports. As this paper focus on algorithmic design and evaluation, more detailed real-world 
deployment setup is beyond the scope of this work. Also note that an ultra-dense HetHet may comprise many 
HetNet units, each consisting of one MC and various numbers of SCs, therefore the obtained results may also 
be utilized to infer other HetNet units’ performances pattern in the network.

The experiments have been implemented via Python 3.9 using scientific and data analysis libraries  Numpy31, 
 Scipy32, and  Pandas33, with related result visualizations generated via  Matplotlib34.

Dataset and experimental setups. The original dataset. When calculating power consumptions using 
Eq. (2), it is important to obtain the traffic load � for every BS, and it is also important to evaluate ML-based 
algorithms using standardized datasets and/or simulation  environments10. Both aspects considered, an estab-
lished multi-source  dataset23 is chosen for the performance evaluation, in which the city of Milan is divided 
into 10,000 square-shaped grids of 235 m × 235 m. The grid indices are calculated as IDgird = (x + 1)+ 100 · y , 
where x, y ∈ [0, 99] are for indexing purpose only. More detailed grid information can be found in Fig. 2 of the 
original  paper23 and using the grid  dataset35. In particular, the telecommunication dataset of the Milan city based 
on real-world call detail records (CDR) data provided by Telecom Italia is used for the evaluation  experiments36. 
The dataset contains phone call, text message, and Internet activities between a user and a BS, which are spac-
tially aggregated into each grid according to the spatial intersections among the grid and nearby BSs’ coverage. 
Additionally, the CDR data was recorded in 10-minute resolution for a two-month period from November 1st, 
2013 to January 1st, 2014. Therefore, the original dataset contains 7 types of features: the grid ID, timestamp 
(representing date and time), in/out Short Message Service (SMS) activities, in/out call activities, and Internet 
activities. In total, the dataset contains 62 days’ data with 144 time slots per day for 10,000 grids, resulting in 8928 
entries of {in-SMS, out-SMS, in-call, out-call, Internet} per grid. Although the dataset consists of unitless values 
(due to commercial confidentiality) for each type of activities, while no information is provided to reverse the 
spatial aggregation, these activity levels represent the volume of user-network interaction at each time slot and 
can hence be utilized to calculate and compare traffic loads between grids.

Dataset pre-processing and scenario setups. The experiments consider a scenario of a HetNet unit located at 
the city center area, with different numbers of SCs Nsc ∈ {4, 8, 12, . . . , 32} with BS types assigned uniformly, to 
evaluate the scalability of GBCSS. In the data pre-processing phase of the evaluation process, CDR values of all 
activity types are first combined into sum CDR activity data for each grid in the Milan dataset as the cell switch-
ing problem considers BSs’ overall traffic loads. This operation fuse the original feature set {in-SMS, out-SMS, 
in-call, out-call, Internet} to a new feature type sum-load for each time slot per grid. After this step comes a grid 
selection and sum CDR value normalization phase to produce factorized values that represent � of BSs. The CDR 
normalization scale is determined by φ for each type of BSs, after which the sum-load feature of a grid becomes 
�
n
t  , 1 ≤ n ≤ NSc + 1 while preserving the traffic variation pattern.

Table 1.  Power profiles for each type of  BSs25.

BS type

Power consumption (W)

�pOperational Po Transmit (max) Pmax Sleep Ps
Macro 130 20 75 4.7

RRH 84 20 56 2.8

Micro 56 6.3 39 2.6

Pico 6.8 0.13 4.3 4.0

Femto 4.8 0.05 2.9 8.0
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The 10,000 grids in the Milan dataset cover both urban and sub-urban areas containing markedly different 
behavioural signatures regarding traffic variation trends, as shown in Fig. 7 in the original  paper23 of the Milan 
dataset. Therefore, choosing grids within the full grid list may violate the above scenario assumptions. Therefore, 
this paper focuses on grids around the city center of Milan (Grid 5060 with x = 59 and y = 50 , representing the 
area around the Duomo di Milano cathedral) as defined in the original  article23. Grids of x ± 4, y ± 4 from Grid 
5060 have been chosen, forming an area of 2115 m × 2115 m that contains 81 grids within the same geographic 
regions of the Milan city center. This also suggests that SC offloading is feasible in this area within the coverage 
of the MC, which is a corner stone for cell-switching operations.

By non-repetitive random selections, 12 dates were chosen from the business days within the two-month 
period in the Milan dataset for all Nsc cases, data for 8 of these days were used to form a training  dataset37, while 
the other 4 days’ data were utilized to form a validation  dataset37. Additionally, two dates have been initially 
preserved before the above random selections, forming a test  dataset37 that is not used in the training process. 
Consisting of data from one workday (Nov. 15th, 2013) and one holiday (Jan. 1th, 2014), the test dataset is used 
for one-day performance evaluation emulating online execution after the algorithm’s deployment, to test the 
proposed GBCSS’ generalibility. As a result, for the processed dataset after grid assignment, the feature set at 
time slot t is {�1t , �2t , . . . , �

NSC+1
t } of size NSC + 1 . The training set contains 1152 entries while the validation and 

test sets consist of 576 and 288 entries, respectively.
As for the grid assignment, the MC was always assigned with Grid 5060’s normalized activities in each Nsc 

case, while one grid for each SC was then selected non-repetitively within the defined region. Only one round 
of grid selections was carried out for every Nsc case (i.e. every data sample in the generated datasets were from 
the same set of grids for each Nsc ∈ {4, 8, 12, . . . 32} case). A fixed random seed is used for all Nsc cases to provide 
consistent and reproducible results. After grid assignment, a BS will experience the traffic variation following 
that of the assigned grid when no cell switching is applied. For readers interested in this temporal aspect of traffic 
variations, Fig. 5 in the original  paper23 has provided such information over a week time.

With all experiment setups introduced, the corresponding experimental parameters are summerized in 
Table 2. All BSs are assumed to have the same maximum capacity in terms of radio resources (bandwidth and 
resource blocks) to simplify the traffic load normalization during the data pre-processing, and the calculations 
in Eqs. (12) and (21). The reason is that we are only interested in whether the original traffic load is preserved 
for each cell-switching scheme according to the introduced performance metrics, following the optimization 
constraint defined by Eq. (12). Moreover, setting different capacities for each BS type only influences φ and thus 
some numerical results for � and Ptot after offloading, while such differences do not influence how a cell switch-
ing strategy is formulated.

GNN setups. For the experiments, the dataset goes through the graph representation process and the nor-
malized load factors become the node features (Xg ) and the calculated power consumption for all nodes become 
the edge features Ag.

Some configurable hyper-parameters are mentioned. For the evaluation, L = 3 hidden layers for node embed-
ding in the GNN computation model are configured, with the neuron size or 128, 128 and 64. The activation 
function µ�·� is set to the Rectified Linear Units (ReLU)38 for all 3 hidden layers. For the output layer setup and 
binary value translation, ��·� is configured as:

where W and b represent learnable parameters (weights and biases) of a linear transformation, T denotes the 
matrix transpose, and σ �·� is the sigmoid activation  function39. This makes the GNN output continuous values 
between [0, 1], which can then be used to provide binary via γv = I[0.5,1]���WTxLv + b�� as previously discussed.

For other GNN configurations, the batch size is set to 64, and each GNN model (one for each Nsc instance) 
is trained for a maximum epoch of 200 in the experiments. The learning rate (LR) is initially set to 10−3 , with a 
dynamic LR  scheduler40 configured which reduces the LR by a factor of 2 if no improvement has been made to 
the loss defined in Eq. (18) for the past 10 epochs. The optimization algorithm is set to the “Adam with decoupled 
weight decay” (AdamW)  optimizer41. The above GNN configurations are summerized in Table 3. The GNN model 
and other deep learning related implementations are fulfilled by  Pytorch42 and Pytorch  Geometric43.

(19)��xLv � = σ �WTxLv + b�

Table 2.  Experimental configurations.

Parameters Values

Number of time slots per day 144

Number of grids considered for each BS 1

Number of days

Training set 8

Validation set 4

Test set
2

(1 workday & 1 holiday)

Bandwidth; number of resource blocks for BSs 20 MHz, 100
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Benchmarks. Benchmarks are necessary to compare the performance of the proposed GBCSS, and the 
comparison basis was selected following this rationale: 1. The optimal solution (where applicable) maximizing 
energy saving while preserving all original traffic, which stands as the performance upper bound. 2. The bottom-
line without any cell switching strategy, such that all BSs’ traffic and thus user QoS are preserved while sacrificing 
the energy efficiency optimization. 3. Another sub-optimal cell switching solution whose performance can be 
directly compared with GBCSS in terms of the performance metrics defined in the next section. As a result, three 
different methods are used for benchmarking, introduced as follows:

• Exhaustive search (ES): This method iterates through all possible combinations of binary switching options 
consisting of the on/off states for all SCs. It also considers the available radio resources at the MC for off-
loading such that the maximum traffic demand that the network can serve is not exceeded during power 
consumption optimization. Therefore, this method checks all possible SC combinations to switch off, and 
guarantees to produce the optimal cell-switching policy that minimizes the total power consumption of the 
network while preserving the user QoS in the network.

• Linear function approximation-based SARSA (FA): This is a state-of-the-art RL-based cell-switching 
scheme proposed by Ozturk et al.12. FA defines every time slot t as an episode, and uses a feature vector 
{Ptot , �

1
t �

2
t , . . . , �

NSC+1
t } containing all BSs’ load factors and system-wise power consumption to train a param-

eter set θ that represents the optimal cell switching policy via linear function approximation. For interested 
readers, more detailed design of the FA algorithm can be found in the original paper.

• All-on: As its name indicates, this approach implements a scheme with no offloading and cell-switching, 
and hence all BSs are always left ON. This method ensures the user QoS within a HetNet unit, but no energy 
saving can be achieved since no SCs will be switched off. It is used as the baseline of optimal throughput with 
respect to the power consumption bottomline.

Performance metrics. This subsection introduces the metrics used to evaluate the performance of GBCSS 
compared with the selected benchmarks. As all metrics are based on the dataset, they are chosen as:

• Power consumption Ptot : This is the HetNet unit’s instantaneous power consumption during a day defined 
in Eq. (1) for each method calculated based on Eq. (2). Measured in Watts (W), this metric evaluates the 
performance of each solution as it reflects the variations in network power consumption in different time 
slots of the day.

• Total energy saved Esaving : The total energy saved is another straightforward yet essential metric to assess 
the performance of GBCSS. Compared to the All-on method that does not consider energy-saving, it is 
calculated as Esaving = EM − EON , where EON and EM are the total energy consumption with All-on method 
and with one of the cell-switching solutions: exhaustive search, the FA-based solution and GBCSS, such that 
EM ∈ {EGNN ,EES ,EFA} . The calculation of daily total energy consumption E for each method following the 
dataset time slots as follows: 

 where Pttot is the power consumption (W) of the HetNet unit at time slot t. As t is presented in 10-minute 
resolution in the Milan dataset, one day (24 hours) leads to Nslots = 144 . Additionally, since the evaluation 
process may include multiple day samples, the average values among different day samples are further cal-
culated to represent E in such cases.

• Normalized network traffic load �% : This metric is the HetNet unit’s sum traffic load after offloading nor-
malized by that before offloading. As the All-on method does not implement any offloading and cell-switching 
schemes, thus can always preserve the original traffic loads. This metric can hence be calculated as �% = �M

�ON
 , 

where �M ∈ {�GNN ,�ES,�FA} is the sum traffic load after offloading using the covered solutions and �ON 
is the sum traffic load using the All-on method. Following Eqs. (4)–(5) and (12), the sum traffic load of one 
day (24 hours) using any of the covered solutions is calculated as: 

(20)E =

Nslots
∑

t=1

Pttot × 60× 10

Table 3.  GNN configurations.

Hyperparameters Values

Number of hidden layers; Neuron size 3; 128 × 128 × 64

Hidden layer activation function ReLU38

Output layer activation function Sigmoid39

Optimizer AdamW41

Learning rate (LR) 10−3

LR scheduler Reduce LR on  Plateau40

Batch size 64

Maximum number of epochs 200
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 where Nslots = 144 in the Milan dataset for 10-minute time slots.
• Normalized energy efficiency η% : This is the daily energy efficiency of the HetNet unit implemented cell-

switching solutions, normalized by that without cell-switching (i.e. All-on). Similar to that of �% , this rela-
tive energy efficiency is calculated as η% = ηM

ηON
 , where ηM ∈ {ηGNN , ηES , ηFA} is the energy efficiency of the 

HetNet unit using the corresponding cell switching solution while ηON is that without cell switching. The 
energy efficiency η using any of the covered solution is calculated as: 

Results and discussions
Following the evaluation setups, this section covers the experimental result analysis for the proposed GBCSS, 
compared with other benchmarks. Qualitative discussions regarding GBCSS with some state-of-the-art solutions 
are also included in this section.

For learning-based solutions (GNN and FA), an offline training stage was first carried out. The trained GNN 
and FA’s policy were then exported to produce statistical results (i.e. metrics Esaving and �% with respect to Nsc ) 
using the validation dataset. Finally, the two day samples in the test dataset is used to emulate the online deploy-
ment for cell-switching execution that provides results for Ptot throughout the day (24 h). Unless otherwise 
stated, the results for each Nsc case are generated using the GNN trained with the dataset generated for that 
case. Note that during the online execution phase, it is possible to update the learning models using the latest 
collected data to further improve the models’ performances. However, such online model updating is beyond 
the scope of this paper.

Before presenting the results regarding each metric, it is also important to analyze the convergence behaviors 
of the GNN training. Using the configured GNN setups, the loss function value defined in Eq. (18) was collected 
during the training stage. For all considered Nsc , the GNN model managed to converge within the first 20 epochs 
for 7 out of 8 Nsc cases, with the minimum epochs for convergence being 5, and the maximum epochs around 
55. As the loss records for all 8 Nsc cases cannot be summarized clearly in a graphical manner, the essential 
information has been presented above.

Statistical results from validation set. Figure 3 shows the results of metrics Esaving , �% , and η% with 
respect to Nsc . The average values using the 4 day samples in the validation dataset are calculated for the metrics. 
It is noteworthy that the ES algorithm has only been executed for Nsc ∈ {4, 8, 12, 16} due to time consumption 
burden as the algorithm is highly computationally demanding with a complexity of O(2N) . This means that the 
processing time for the ES algorithm doubles for every unit Nsc increment. In contrast, GBCSS learns to find a 
sub-optimal solution that approximate to the optimality as much as possible while maintaining a much lower 
computational complexity of O(N).

The metric Esaving is the optimization objective for cell switching solutions according to the problem defini-
tion in Eq. (11), and is an essential metric to consider. It can be seen in Fig. 3a that the daily total energy saved 
increases when Nsc is raised for all cell-switching methods, based on the fact that deploying more SCs leads to 
increased power consumption, while creating more possibilities for offloading and cell switching when the MC 
has sufficient resource to take over, and hence larger energy saving.

For Nsc ∈ {4, 8, 12, 16} , the saved energy using the ES algorithm is the highest among the considered solu-
tions, and can be expected to remain so for larger Nsc values if ES was to be executed. For GBCSS, the energy 
saved is lower than that of ES. For Nsc ∈ {4, 8, 12, 16} , the GBCSS achieves 53.97%, 63.04%, 66.82%, and 60.08% 
of ES’ Esaving performance, resulting in a 62% Esaving performance for the 4 Nsc cases. Moreover, the GNN is able 

(21)� =

Nslots
∑

t=1

(

�̂
1
t +

NSC+1
∑

i=2

φi�̂
i
t

)

(22)η =
�

E

Figure 3.  Statistical results from the validation set for different Nsc (a) Total energy saved Esaving . (b) Relative 
traffic load �% . (c) Relative energy efficiency η% . ES is not executed for Nsc > 16 due to huge time consumption.
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to further increase the Esaving for a large number of deployed SCs as the slope of the Esaving curve has clearly 
increased for Nsc ∈ {24, 28, 32} . The detailed discussion regarding this aspect is covered in the one-day perfor-
mance analysis with more supporting results.

Interestingly, the Esaving using the FA benchmark is clearly larger than that of GBCSS for most considered 
Nsc cases except for Nsc = 8 and 12, in which both solutions result in similar Esaving . GBCSS can achieve a maxi-
mum 103.61% and a minimum of 62.28% Esaving performances compared with using the FA, with an average of 
86.60% Esaving performance compared with using the FA for all Nsc cases. This suggests that the FA benchmark 
outperforms GBCSS in raw energy saving.

However, it is equally important to also consider the metric �% , which indicates how much of the original 
traffic load without cell switching (i.e. All-on) can be preserved using different cell-switching solution and rep-
resents the optimization constraint defined in Eq. (12). According to its definition, the maximum value for �% 
is 100%, which means that all original traffic load is preserved after cell switching execution.

Figure 3b shows this metric with a reference red dashed line of the All-on method stands for the upper 
bound. It can be seen in the figure that ES has �% = 100% for Nsc ∈ {4, 8, 12, 16} , and is reasonable to assume 
this trend will be consistent for other Nsc cases. In comparison, using the proposed GBCSS results in an average 
�% of 99.63% for all 8 Nsc cases, with a maximum of 99.88% and minimum of 99.31%. This suggests that the 
GNN learns to preserve the user QoS as much as possible when reducing the HetNet unit’s energy consumption.

In contrast, it can be seen that the �% using FA decreases from 99.77% for Nsc = 4 to 78.30% for Nsc = 32 . 
This means that compared to GBCSS, the extra energy saved when using the FA benchmark as shown in Fig. 3a 
will cost 21% of the original traffic load and hence the user QoS in the worst case. The reason is that using the 
offline trained FA algorithm for online decision making leads to much more frequent decision making that 
causes the MC to overload and thus user QoS downgrade, as only the MC can take over the traffic load of a SC 
according to the problem formation.

Considering both energy consumption and traffic loads, Fig. 3c shows the normalized daily energy efficiency 
η% for the considered cell switching solutions with respect to All-on. It is clear that η% of using the ES algorithm is 
the highest and achieves an average η% of 13.74% among the Nsc cases, with a maximum energy efficiency gain of 
16.25% compared to that of All-on, while η% using the FA solution drops continuously and becomes even lower 
than that of All-on due to a large proportion of original traffic load being sacrificed to achieve higher power 
saving. In comparison, GBCSS achieves an average and maximum η% of 8.50% and 10.41% respectively com-
pared to All-on. The trend of η% using GBCSS is similar to that of ES based on the results for Nsc ∈ {4, 8, 12, 16} 
according to Fig. 3c, while overall the energy efficiency gain using the GNN is about 62% for these Nsc cases. 
Moreover, assuming the average η% (13.74%) using the ES is preserved for Nscin{20, 24, 28, 36} , the GNN can 
achieve a maximum 75.76% of ES’ performance regarding energy efficiency gain.

Nevertheless, the FA benchmark still outperforms the proposed GBCSS when Nsc = 4 with FA’s η% being 
around 2.5% larger as in Fig. 3c. A potential reason is that the GNN is not able to further approximate to the 
optimal solution when the gradient calculated via the loss function Eq. (18) becomes too small, as learning to 
always switch on the MC leads to a large L improvement when training the GBCSS. In comparison, the FA 
benchmark avoids such situation as the action for the MC has predefined to be always ON. However, the relative 
underperformance of GNN in this case can be regarded as insignificant as the overall energy saved in this case 
is low due to only 4 SCs were deployed.

Test set performance results. The results generated with the test dataset for one-day power consump-
tion using each solution are presented for 3 Nsc cases (i.e. Nsc ∈ {4, 12, 32} ) that represents scenarios of a small, 
medium and large number of deployed SCs within the considered Nsc cases. The results of node size generaliza-
tion test for the GNN is also covered in this section.

Performance comparison on workday samples. Figure  4 shows the power consumption per time slot using 
GBCSS and other benchmarks throughout a workday (from 00:00 a.m. to 11:59 p.m.) for the three Nsc cases. Due 

Figure 4.  One-day performance results for the workday sample (Nov. 15th, 2013) in the test set with respect to 
power consumption for different Nsc.
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to the same computational complexity reason as for statistical results analysis, the ES algorithm is not executed 
to generate results for Nsc = 32.

According to Eqs. (2) and (3), the power consumption calculation is a linear transformation of � when no 
BS is put into sleep. Therefore, a HetNet unit’s traffic load trend throughout a day can be inferred by the power 
consumption trend of the All-on method. It can be seen in Fig. 4 that the HetNet unit’s power consumption is 
relatively low before dawn with only a small number of active users, while the traffic load starts to rise around 8 
a.m. and peaks before midday, leading to an increased power consumption period with less potential for power 
saving. Later, the traffic load start to decline more significantly in the late afternoon (4 p.m.), leading to another 
period for energy efficiency optimization using cell switching.

As shown in Fig. 4a, all 3 cell-switching solutions are able to significantly reduce the power consumption 
from 0 a.m. to 8 a.m.. During this period, the power consumption using GBCSS highly mirrors the behavior 
of the ES algorithm. During the high-traffic hours, GBCSS turns to follow the strategy of All-on, which is a 
suboptimal strategy for this time period. From 4 p.m. until midnight, the GNN also learns to reduce the HetNet 
unit’s power consumption, but the performance is not as significant as it does in the time period before dawn 
compared to the optimal results computed via ES. In contrast, the FA benchmark also mirrors the behavior of ES 
over the day, and overall outperforms GBCSS especially after 4 p.m.. Moreover, during the busy hours between 
9 a.m. and 4 p.m., it can be seen that for some time slots, the power consumption of using the FA benchmark 
becomes less than that using ES. Because ES produces the optimal cell switching decisions for power saving 
while maintaining the original traffic loads in the HetNet unit, it can be inferred that FA’s further power-saving 
comes from sacrificing the user QoS.

For the Nsc = 12 case in Fig. 4b, the behavior of the ES algorithm remains the same as in the Nsc = 4 case, 
while a larger gap can be found compared with the power consumption of All-on, suggesting a larger potential 
for energy efficiency optimization. Similarly, GBCSS also demonstrates comparable results consistent to those 
in Fig. 4a, with the performance after 4 p.m. also improved compared to that in the Nsc = 4 case. However, the 
results of the FA benchmark start to have more significant fluctuations in Fig. 4b, with obviously lower power 
consumption compared with using the ES during the busy hours. Combining with the results in Fig. 3b, this 
means that the FA benchmark starts to output more decisions that causes user QoS sacrifices.

As for the Nsc = 32 case in Fig. 5c, the fluctuation in the results of the FA benchmark has even worsen with 
the number of decisions sacrificing the user QoS further rises. An obvious explanation to this trend is that the 
FA benchmark utilizes the linear function approximation technique to represent the value function, which may 
not have enough expressiveness for scenarios with higher complexity. In contrast, GBCSS shows much more 
stable results that is consistent to those for Nsc = 4 and 12 . Moreover, GBCSS also starts to switch off SCs during 
the busy hours, and the power consumption during this period becomes smaller than that of All-on for Nsc = 32 
according to Fig. 4c. This is much more similar to the strategy that ES produces based on results in Fig. 4a,b. 
As discussed in the above section, the main reason to it can be that the loss function cannot be significantly 
optimized when Nsc is small, following the calculation in Eq. (18). Moreover, cell switching during a time period 
with intensive traffic mainly results in marginal power consumption improvement for small Nsc , as shown by 
the results using the ES algorithm. In contrast, a larger Nsc leads to more potential for a significant loss reduc-
tion during the busy hours. This can be regarded as an advantage to exploit, because the envisioned ultra-dense 
HetNet development for beyond 5G will result in significantly large numbers of SCs to be deployed, where the 
GNN may find great potential in approximating to the optimal cell switching decision. All the results presented 
in this section so far correspond to the discoveries in Fig. 3.

Additionally, it can be seen in Fig. 4 that sometimes using GBCSS and the FA benchmark results in more 
power consumption than using the All-on method during the busy hours for Nsc = 4 and 8. This raises another 
question as it is counter-intuitive to have such observations that switching off some BSs causes more power 
consumption than always keeping all the SCs on. However, considering Eq. (2) together with the parameters 
in Table 1, it is possible for certain cell switching decisions to cause an overall larger power consumption by 
offloading to the MC. For example, switching off a half-loaded femto BS results in a 2.1W power consumption 
reduction under the experiment configuration, but the MC taking over the offloaded traffic (assuming sufficient 

Figure 5.  One-day performance results for the holiday sample (Jan. 1st, 2014) in the test set with respect to 
power consumption for different Nsc.
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resource) will have its power consumption raised by 47W, which leads to a -44.9 W power consumption gain. A 
formal mathematical proof can be found  in12 that uses the same power model and BS power profiles.

In summary, the proposed GBCSS is able to closely approximate the optimal cell switching decisions com-
puted by the ES algorithm when the total traffic load on the HetNet unit is low, while tends to generate a subop-
timal strategies during the time period with intensive traffic. Nevertheless, such suboptimal strategy during the 
busy hours can be improved when Nsc becomes larger (Fig. 4c), when the GNN starts to mirror the behaviors of 
ES as in Fig. 4a,b. The one-day performance evaluation on a workday produces results that closely correspond 
to the statistical results generated from the validation dataset.

Performance comparison on holiday samples. Under the same setup, Fig. 5 shows the power consumption using 
different cell switching solutions on the New year’s day holiday (2014/01/01). The trending in the figures cor-
responds with the event of people celebrating the new year’s eve, leading to a large number of active users and 
hence high power consumption throughout the early hours after midnight. In comparison, the overall power 
consumption during daytime is more stable compared with that during the workday sample in Fig. 4.

Furthermore, it is clear that using cell switching solutions results in significant power savings during the 
daytime. This is similar to the two power-saving time periods in Fig. 4, suggesting that during such a holiday, 
mobile service requests during the normal busy hours are not as intensive compared to that in a workday. Moreo-
ver, in Fig. 5a, the power consumption using both GNN and FA is nearly identical to the optimal results using 
the ES benchmark. In addition, the GNN makes no decisions that cause the power consumption to be higher 
than All-on and FA also performs significantly better in this regard. The reasoning to this phenomenon is that 
learning-based solutions learn to capture the power saving potential during low-activity time periods better than 
during the high-activity periods, combined with the results in Fig. 4.

Other results found in Fig. 5 are highly comparable to the findings in Fig. 4, such as the results using the FA 
benchmark have fluctuations with the magnitude increases for a larger Nsc , while the GNN is more stable in this 
regard. As these aspects are already discussed in the workday case, this section includes no further elaborations.

Generalization capability on node size. A remarkable feature of GNN models is their node size invariance, 
indicating that as long as the data with a similar underlying topology can be expressed using the same graph 
representation, a GNN model trained using data of node size i can be directly use to produce results for node size 
j ( i  = j ). This feature greatly boosts the generalization capability of GNN models compared with other ML mod-
els, leading to a significant cost reduction when deploying GNN models to different scenarios for a defined task.

Therefore, this section presents the node size generalization test to the proposed GBCSS. The workday data 
samples in the test dataset is used. Two GNN models trained with training data of Nsc = 4 and 32 are applied in 
this test, while the node size for the test case is Nsc = 12 for both models to give a clearer comparison. Because 
RL-based solutions need to confirm the feature space and/or action space that cannot be naturally extended by 
the model itself without reapplication, the FA benchmark is hence not applicable in this evaluation.

The one-day power consumption results of this test is shown in Fig. 6. These results shows that both models 
trained with different node sizes (both larger and smaller node size during the training stage) can be directly 
utilized in the Nsc = 12 scenario. For the two lower-traffic periods, 0 a.m. to 8 a.m. and after 4 p.m., both models 
generate comparable results to that in the same node size scenarios in Fig. 5b. Furthermore, it can be seen that 
the models follow some detail from what learned in the original node size scenario. For example, the GNN model 
trained with Nsc = 4 produces some sub-optimal decisions that lead to higher power consumption around 9 a.m., 
similar to that in Fig. 4a, while the GNN model trained with Nsc = 32 tends to result in large power consumption 
around 0 a.m., which corresponding to the behavior in Fig. 4c. Unfortunately, the model trained with Nsc = 32 
does not maintain the strategy to switch off some SCs for power saving as in Fig. 4c for Nsc = 12 , while keeps 
mirroring All-on during the busy hours, similar to that in Fig. 4b. The reason to this may still be the learned loss 

Figure 6.  One-day power consumption results for the GNN’s node size generalization test, with models trained 
using two different node sizes tested with Nsc = 12 . (a) Nsc = 4 for training. (b) Nsc = 32 for training.
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function characteristics, that a smaller Nsc leads to insignificant loss improvement for cell switching during busy 
hours, as discussed for the workday case.

The node size generalization test results suggest that models trained with one node size can be directly applied 
to a similar scenario with another node size. Although the performance may not be optimal, this feature can 
greatly reduce the cost of model transfer, as the whole GNN model can be directly utilized without any prepara-
tory steps. After the transfer, the model can be updated using data collected in the new scenario to learn the 
underlying patterns to improve performance.

Conclusion
The development of cellular networks has led to the proliferation of network deployment with BSs being the 
major energy consumers in cellular networks. This has resulted in calls for greater energy efficiency to meet green 
and sustainable cellular network demands when applied to real-life network deployments and architectures. As 
GNN has the significant features of learning graph structured data to improve training robustness, and node size 
invariance that largely reduce computational cost for redeployment, this paper initially explores a GNN-based 
cell switching solution (GBCSS) for a CDSA HetNet which can be deployed at each macro BS, and is capable of 
learning the optimal policy in a dense HetNet environment to save energy and while maintaining the user QoS. 
The GBCSS approach was then evaluated using the Milan telecommunication dataset based on real-world CDR 
information and compares it with state-of-the-art benchmarks.

This showed that the GBCSS approach can attain 10.41% energy efficiency gains compared to the baseline 
power with no cell switching, while maintaining an average of 99.63% of the original traffic loads for differing 
numbers of BSs, suggesting that virtually no user QoS is sacrificed while reducing energy consumption. This 
performance is 75.76% of the optimum results computed by the ES algorithm. Additionally, the GNN model 
trained using data from only workdays generalizes well to both workday and holiday test cases, and is capable 
of learning the pattern for cell switching during the busy hours in a larger node size (number of SCs deployed) 
setup for further performance improvement. Node size generalization tests were also performed, with the results 
supporting the notable feature of GNN’s node size invariance that models trained using data of one node size can 
be directly utilized in scenarios with different node sizes. Furthermore, GBCSS has a computational complex-
ity of O(N) for online execution, and is thus much more scalable compared to the ES and similar algorithms of 
O(2N) as discussed in the complexity analysis.

The proposed GBCSS produces satisfactory energy saving in the network with almost no impact on the user 
QoS, while showing great potentials for a large number of deployed SCs. Besides, the proposed solution has a very 
good generalization ability and scalability. All these results make GBCSS a promising candidate for practical cell 
switching applications to future ultra-dense HetNets. With the development of 6G comes new energy efficiency 
and network intelligence demand, and the world is also witnessing the rise of energy prices, implementing 
GBCSS will result in significant energy cost saving, while also relieving the deployment cost of the learning-
based algorithm. This will significantly relieve the operational cost for both developed and developing markets.

Future research in this direction includes combing RL algorithms and GNN to further improve the GBCSS’ 
convergence to the optimality and thus better performance, while exploring heterogeneous graph representation 
for cell switching, incorporating date and time information in the graph representation to improve robustness 
for GBCSS also remains of high importance. Moreover, as this work mainly focuses on the algorithmic design, 
investigating how GBCSS and learning-based algorithms in general may be deployed in a real-world scenario 
considering detailed protocol stacks is also a valuable direction.

Data availability
The original data that support the findings of this study are available in the Harvard Dataverse repository, https:// 
doi. org/ 10. 7910/ dvn/ EGZHFV. The datasets are from third parties and distributed under the terms of the Crea-
tive Commons CC BY license. The original  work23 has been properly cited in the “Dataset and experimental 
setups” section of this paper.
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