59,024 research outputs found

    Dissecting the Biological Motherboard (Systems Biology and Beyond)

    Get PDF
    Genome-scale molecular networks, including gene pathways, gene regulatory networks and protein interactions, are central to the investigation of the nascent disciplines of systems biology and bio-complexity. Dissecting these genome-scale molecular networks in its all-possible manifestations is paramount in our quest for a genotype-input phenotype-output application which will also take environment-genome interactions into account.

Machine learning approaches are now increasingly being used for reverse engineering such networks. Our work stresses the importance of a system approach in biological research and how artificial neural networks are at the forefront of Artificial Intelligence techniques that are increasingly being used to construct as well as dissect molecular networks, the building blocks of the living system.

Our paper will show the application of artificial neural networks to reverse engineer a temporal gene pathway 
In this paper we will also explore the pruning of nodes of these artificial neural networks to simulate gene silencing and thus generate novel biological insight into these molecular networks (The Biological Motherboard).

The research described is novel, in that this may be the first time that the application of neural networks to temporal gene expression data is described. It will be shown that a trained artificial neural network, with pruning, can also be described as a gene network with minimal re-interpretation, where the weights on links between nodes reflect the probability of one gene affecting another gene in time

    A Computational Framework for Learning from Complex Data: Formulations, Algorithms, and Applications

    Get PDF
    Many real-world processes are dynamically changing over time. As a consequence, the observed complex data generated by these processes also evolve smoothly. For example, in computational biology, the expression data matrices are evolving, since gene expression controls are deployed sequentially during development in many biological processes. Investigations into the spatial and temporal gene expression dynamics are essential for understanding the regulatory biology governing development. In this dissertation, I mainly focus on two types of complex data: genome-wide spatial gene expression patterns in the model organism fruit fly and Allen Brain Atlas mouse brain data. I provide a framework to explore spatiotemporal regulation of gene expression during development. I develop evolutionary co-clustering formulation to identify co-expressed domains and the associated genes simultaneously over different temporal stages using a mesh-generation pipeline. I also propose to employ the deep convolutional neural networks as a multi-layer feature extractor to generate generic representations for gene expression pattern in situ hybridization (ISH) images. Furthermore, I employ the multi-task learning method to fine-tune the pre-trained models with labeled ISH images. My proposed computational methods are evaluated using synthetic data sets and real biological data sets including the gene expression data from the fruit fly BDGP data sets and Allen Developing Mouse Brain Atlas in comparison with baseline existing methods. Experimental results indicate that the proposed representations, formulations, and methods are efficient and effective in annotating and analyzing the large-scale biological data sets

    Inference of Genetic Regulatory Networks with Recurrent Neural Network Models using Particle Swarm Optimization

    Get PDF
    Genetic regulatory network inference is critically important for revealing fundamental cellular processes, investigating gene functions, and understanding their relations. The availability of time series gene expression data makes it possible to investigate the gene activities of whole genomes, rather than those of only a pair of genes or among several genes. However, current computational methods do not sufficiently consider the temporal behavior of this type of data and lack the capability to capture the complex nonlinear system dynamics. We propose a recurrent neural network (RNN) and particle swarm optimization (PSO) approach to infer genetic regulatory networks from time series gene expression data. Under this framework, gene interaction is explained through a connection weight matrix. Based on the fact that the measured time points are limited and the assumption that the genetic networks are usually sparsely connected, we present a PSO-based search algorithm to unveil potential genetic network constructions that fit well with the time series data and explore possible gene interactions. Furthermore, PSO is used to train the RNN and determine the network parameters. Our approach has been applied to both synthetic and real data sets. The results demonstrate that the RNN/PSO can provide meaningful insights in understanding the nonlinear dynamics of the gene expression time series and revealing potential regulatory interactions between genes

    Large-scale associations between the leukocyte transcriptome and BOLD responses to speech differ in autism early language outcome subtypes.

    Get PDF
    Heterogeneity in early language development in autism spectrum disorder (ASD) is clinically important and may reflect neurobiologically distinct subtypes. Here, we identified a large-scale association between multiple coordinated blood leukocyte gene coexpression modules and the multivariate functional neuroimaging (fMRI) response to speech. Gene coexpression modules associated with the multivariate fMRI response to speech were different for all pairwise comparisons between typically developing toddlers and toddlers with ASD and poor versus good early language outcome. Associated coexpression modules were enriched in genes that are broadly expressed in the brain and many other tissues. These coexpression modules were also enriched in ASD-associated, prenatal, human-specific, and language-relevant genes. This work highlights distinctive neurobiology in ASD subtypes with different early language outcomes that is present well before such outcomes are known. Associations between neuroimaging measures and gene expression levels in blood leukocytes may offer a unique in vivo window into identifying brain-relevant molecular mechanisms in ASD

    Two-photon imaging and analysis of neural network dynamics

    Full text link
    The glow of a starry night sky, the smell of a freshly brewed cup of coffee or the sound of ocean waves breaking on the beach are representations of the physical world that have been created by the dynamic interactions of thousands of neurons in our brains. How the brain mediates perceptions, creates thoughts, stores memories and initiates actions remains one of the most profound puzzles in biology, if not all of science. A key to a mechanistic understanding of how the nervous system works is the ability to analyze the dynamics of neuronal networks in the living organism in the context of sensory stimulation and behaviour. Dynamic brain properties have been fairly well characterized on the microscopic level of individual neurons and on the macroscopic level of whole brain areas largely with the help of various electrophysiological techniques. However, our understanding of the mesoscopic level comprising local populations of hundreds to thousands of neurons (so called 'microcircuits') remains comparably poor. In large parts, this has been due to the technical difficulties involved in recording from large networks of neurons with single-cell spatial resolution and near- millisecond temporal resolution in the brain of living animals. In recent years, two-photon microscopy has emerged as a technique which meets many of these requirements and thus has become the method of choice for the interrogation of local neural circuits. Here, we review the state-of-research in the field of two-photon imaging of neuronal populations, covering the topics of microscope technology, suitable fluorescent indicator dyes, staining techniques, and in particular analysis techniques for extracting relevant information from the fluorescence data. We expect that functional analysis of neural networks using two-photon imaging will help to decipher fundamental operational principles of neural microcircuits.Comment: 36 pages, 4 figures, accepted for publication in Reports on Progress in Physic
    corecore