3 research outputs found

    Predicting Corrosion Damage in the Human Body Using Artificial Intelligence: In Vitro Progress and Future Applications Applications

    Get PDF
    Artificial intelligence (AI) is used in the clinic to improve patient care. While the successes illustrate the impact AI can have, few studies have led to improved clinical outcomes. A gap in translational studies, beginning at the basic science level, exists. In this review, we focus on how AI models implemented in non-orthopedic fields of corrosion science may apply to the study of orthopedic alloys. We first define and introduce fundamental AI concepts and models, as well as physiologically relevant corrosion damage modes. We then systematically review the corrosion/AI literature. Finally, we identify several AI models that may be Preprint implemented to study fretting, crevice, and pitting corrosion of titanium and cobalt chrome alloys

    Ti-6Al-4V β Phase Selective Dissolution: In Vitro Mechanism and Prediction

    Get PDF
    Retrieval studies document Ti-6Al-4V β phase dissolution within total hip replacement systems. A gap persists in our mechanistic understanding and existing standards fail to reproduce this damage. This thesis aims to (1) elucidate the Ti-6Al-4V selective dissolution mechanism as functions of solution chemistry, electrode potential and temperature; (2) investigate the effects of adverse electrochemical conditions on additively manufactured (AM) titanium alloys and (3) apply machine learning to predict the Ti-6Al-4V dissolution state. We hypothesized that (1) cathodic activation and inflammatory species (H2O2) would degrade the Ti-6Al-4V oxide, promoting dissolution; (2) AM Ti-6Al-4V selective dissolution would occur and (3) near field electrochemical impedance spectra (nEIS) would distinguish between dissolved and polished Ti-6Al-4V, allowing for deep neural network prediction. First, we show a combinatorial effect of cathodic activation and inflammatory species, degrading the oxide film’s polarization resistance (Rp) by a factor of 105 Ωcm2 (p = 0.000) and inducing selective dissolution. Next, we establish a potential range (-0.3 V to –1 V) where inflammatory species, cathodic activation and increasing solution temperatures (24 oC to 55 oC) synergistically affect the oxide film. Then, we evaluate the effect of solution temperature on the dissolution rate, documenting a logarithmic dependence. In our second aim, we show decreased AM Ti-6Al-4V Rp when compared with AM Ti-29Nb-21Zr in H2O2. AM Ti-6Al-4V oxide degradation preceded pit nucleation in the β phase. Finally, in our third aim, we identified gaps in the application of artificial intelligence to metallic biomaterial corrosion. With an input of nEIS spectra, a deep neural network predicted the surface dissolution state with 96% accuracy. In total, these results support the inclusion of inflammatory species and cathodic activation in pre-clinical titanium devices and biomaterial testing

    Neural Network for Fretting Wear Modeling

    No full text
    corecore