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Key Points: 22 

• Artificial intelligence is currently used in the clinic to improve patient outcomes 23 

• While there have been some successes, artificial intelligence has not yet made advances 24 

in biomaterials research 25 

• Few studies implement artificial intelligence/machine learning to predict corrosion of 26 

orthopedic biomaterials; Many studies investigate physiologically relevant corrosion 27 

damage modes in the context of marine, oil and gas, and aerospace.  28 

• Artificial intelligence/machine learning models may be able to predict corrosion damage 29 

modes from both image and non-image data, as well as multi-dimensional variable spaces 30 

that may provide value to the study of orthopedic biomaterials.  31 

• Implant registries and retrieval libraries are a potentially rich source of information to 32 

build datasets to apply state-of-the-art machine learning models.  33 

 34 

Synopsis: Artificial intelligence (AI) is used in the clinic to improve patient care. While the 35 

successes illustrate the impact AI can have, few studies have led to improved clinical outcomes. 36 

A gap in translational studies, beginning at the basic science level, exists. In this review, we 37 

focus on how AI models implemented in non-orthopedic fields of corrosion science may apply to 38 

the study of orthopedic alloys. We first define and introduce fundamental AI concepts and 39 

models, as well as physiologically relevant corrosion damage modes. We then systematically 40 

review the corrosion/AI literature. Finally, we identify several AI models that may be 41 
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implemented to study fretting, crevice, and pitting corrosion of titanium and cobalt chrome 42 

alloys.  43 

1. Introduction 44 

1.1 Artificial Intelligence in Orthopedics 45 

Artificial intelligence (AI) and machine learning (ML) are increasingly used in orthopedics to 46 

assess patient risk, improve diagnostic accuracy in radiographs and predict patient outcomes1-5. 47 

The transition to the electronic health record following the American Recovery and 48 

Reinvestment Act in 2009 has exponentially increased the amount of digital medical data for 49 

each patient6-8. This data along with biological samples, retrieved devices, images, and patient 50 

reported outcomes may be leveraged in multi-modal machine learning models to improve 51 

clinical outcomes and decrease patient complications9. 52 

The goal of AI in orthopedics is not to replace the surgeon or radiologist at the point of care, 53 

rather it is a tool to ultimately improve the consistency and quality of treatment patients receive 54 

at a population health level. Indeed, one of the fundamental theorems in the field of 55 

bioinformatics, the study of biomedical data to improve human health, is that a person in 56 

combination with an information resource is greater than that same person unassisted10-13. In 57 

orthopedics, that information resource may include machine learning models to predict either 58 

adverse events from a patient’s electronic health record, or hip osteoarthritis from x-ray 59 

images2,14,15. The current clinical applications and future implications of AI in orthopedics are 60 

well documented in the literature3,16-19. Some potential areas where ML or AI may find important 61 

new information is in their application to implant registries and/or implant retrieval programs 62 

where extensive information related to implant performance could be interrogated. However, 63 
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translational science begins outside of the clinic, and a gap exists in the application of AI to 64 

orthopedic implants and biomaterials at a basic science level. 65 

To date, the application of AI to metal orthopedic biomaterials is limited, especially in the 66 

subfield of corrosion. Despite few published studies, the intersection of AI and corrosion of 67 

orthopedic biomaterials may clinical implications. Langton et al., (2022), conducted AI-based 68 

work relating metallic corrosion and debris generation in total hip replacement patients with 69 

measures of soft-tissue reactions. They implement genetic phenotyping and develop a machine 70 

learning algorithm that may be able to predict genetically predisposed patient populations that 71 

are more reactive to the generation of metal-derived degradation products20. This work, for the 72 

first time, clearly establishes a genetic link to a metal hypersensitivity reaction in a subgroup of 73 

the patient population.   74 

Permanently implanted metal devices are the standard of care for many orthopedic procedures 75 

including total hip and knee replacement surgeries. In vivo, there are many factors which impacts 76 

the survivorship of these metallic implants including infection, loosening, wear, and corrosion21-77 

28.  Passive metals including 316L stainless steel, CoCrMo, and Titanium and its alloys are78 

among the most used in orthopedic devices due to the passive oxide film that forms on their 79 

surface29-31. When this 2-10 nanometer thick film is interrupted in vivo, corrosion occurs, and the 80 

resulting damage may be associated with clinical failure. 81 

Retrieval studies in the past three decades reveal corrosion damage modes on CoCrMo and Ti-82 

6Al-4V devices, including mechanically-assisted corrosion, fretting corrosion, crevice corrosion, 83 

and pitting25,28,29,32,33. Developing in vitro AI models to detect, classify and predict these damage 84 

modes, and translating these results in vivo may increase implant longevity, decrease revisions, 85 

and improve patient outcomes. While a wealth of information exists on the application of AI to 86 
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the broader corrosion literature, few basic science studies use AI to predict or classify corrosion 87 

in vivo or vitro in the context of orthopedic biomaterials. Analyzing AI models from the 88 

aerospace, oil and gas, and marine corrosion fields may provide insight into how these models 89 

might apply to metals used in the human body. In this review, we first define AI and commonly 90 

used AI models in corrosion science. Next, we briefly introduce corrosion damage modes that 91 

are relevant to orthopedic biomaterials including fretting corrosion, crevice corrosion, and 92 

pitting. We then systematically analyze how researchers are using AI to predict and classify each 93 

of these damage modes. Finally, we discuss how these AI models may be translated from the 94 

broader corrosion literature into orthopedics to ultimately improve patient outcomes.   95 

1.2 AI Primer 96 

Here we define fundamental artificial intelligence (AI) concepts and models that will be used 97 

throughout this review. AI uses computers to model intelligent behavior with the minimal human 98 

intervention34. The application of AI is firmly entrenched in today's widespread technological 99 

landscape and is used in various industries, including finance, manufacturing, and medicine35-37. 100 

AI aims to make computers think and act like humans to solve complex problems. Machine 101 

learning (ML) is a crucial subset of AI and can automatically learn from previous data to gain 102 

knowledge from experience. ML models gradually improve their learning behavior to make 103 

predictions based on new, unseen data38. 104 

1.2.1 Model Learning 105 

Machine learning can broadly be categorized as supervised, unsupervised, and reinforcement 106 

learning. In supervised learning, a computer algorithm is trained on an input dataset labeled to 107 

classify data and predict outcomes. The learning algorithm can develop an inferred function that 108 
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can detect the underlying relationships between the input data and output labels to make 109 

predictions about unseen observations after encountering sufficient training data. Supervised 110 

learning is implemented for object classification, semantic segmentation, and time series 111 

prediction. Within biomedicine, supervised learning can be utilized to leverage existing patient 112 

data where the outcome is known to aid in future prediction.  113 

In contrast, unsupervised learning is used to train models on unlabeled data to discern underlying 114 

patterns within the dataset. These features are otherwise difficult to determine and reliably identify 115 

from human intervention alone.  The unsupervised learning model can group input data based on 116 

similarity instead of predicting continuous variable output values. Unsupervised learning 117 

applications include clustering, association, and complex data dimension reduction.  118 

Reinforcement learning is a sub-domain of machine learning that enables an agent to learn how to 119 

take proper actions in an interactive environment to maximize cumulative rewards. The agent, also 120 

known as the decision maker, can perceive the surrounding environment through sensors and take 121 

actions to achieve goals.  While most supervised and unsupervised learning algorithms focus on 122 

minimizing model loss, reinforcement learning focuses on maximizing the total reward. At the 123 

intersection of supervised and unsupervised learning is semi-supervised learning which works with 124 

a small number of input data with labeled output and a large number of input data without labeled 125 

output.  Out of all the machine learning techniques mentioned above, supervised learning is the 126 

most widely used in orthopedics. 127 

1.2.2 Model Prediction, Regression, and Classification 128 

We typically categorize supervised machine learning models depending on the type of “ground 129 

truth” they predict. Models that predict continuous numeric values or quantitative outputs are 130 
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typically considered regression models, while those that predict a label or categorical output are 131 

considered classification.  The differences between these two categories are shown in Figure 1. In 132 

addition, the techniques to determine the model success differs. Classification prediction results 133 

may be evaluated by accuracy, precision, recall, confusion matrix, and so on. In regression 134 

modeling, the mean absolute error (MAE), mean square error (MSE), and root mean square error 135 

(RMSE) are frequently used metrics to calculate the difference between the predicted and ground 136 

truth values.  137 

1.2.3 Machine Learning Models: Artificial Neural Networks  138 

Artificial neural networks (ANN), support vector machines (SVM), and decision trees (DT) are 139 

prominent ML algorithms for classification (Figure 1A) and regression (Figure 1B) prediction in 140 

both the academic literature and in the clinic. 141 

 142 

Figure 1. The plots of (A) classification modeling and (B) regression modeling. 143 

Artificial neural networks (ANN) are supervised ML algorithms that loosely imitate the biological 144 

neural circuit. In practice, this model is a cluster of connected artificial neurons that extracts 145 
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features from raw input data. A neuron of ANN, much like a biological neuron, receives input and 146 

processes it to produce an output39. This artificial neuron uses a mathematical function known as 147 

the activation function to process the input. In a web of interconnected neurons, one neuron’s 148 

output becomes another’s input.  Next, a backpropagation algorithm is applied to train the ANN40. 149 

The weights of activation functions are iteratively updated in backpropagation based on the loss 150 

function performance. Figure 2A shows a typical ANN comprising input, hidden, and output 151 

layers.  152 

An ANN with multiple hidden layers is a deep neural network (DNN).  DNNs became successful 153 

with tremendous growth in computing power and the accessibility of large amounts of data. The 154 

popularity of DNN played a significant role in the rise of Deep Learning (DL), a sub-discipline of 155 

machine learning41. Muti-layer perceptron networks (MPN), convolutional neural networks 156 

(CNN), and recurrent neural networks (RNN) are prominent deep learning algorithms utilized for 157 

processing data such as images, text, and audio. DL algorithms can understand complex features 158 

of massive data that are not apparent to human intuition. Computer vision, natural language 159 

processing, drug design, and bioinformatics are taking advantage of DL models for classification, 160 

regression, and cluster analysis42-45. In healthcare, DL has been employed for medical image 161 

classification to assist in disease diagnosis and research46. A fully trained DL model on orthopedic 162 

radiographs performed on par with human experts in identifying fractures47.  163 

1.2.4 Machine Learning Models: Support Vector Machines  164 

Support vector machines are a popular ML algorithm for classification problems48. SVMs are 165 

linear classifiers that can be applied to nonlinear datasets. They use kernel functions, mathematical 166 

formulations that converts input data into the required form, to map the nonlinear data onto a high-167 

dimensional feature space. As illustrated in Figure 2B, a hyperplane is generated within this feature 168 
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space that assists in data classification.  SVMs are known for their abilities to generalize and escape 169 

local extrema.  Due to these properties, SVMs have been applied for medical image classification, 170 

health monitoring, and disease prediction49-51. SVMs have also been used for several classification 171 

tasks to investigate osteoarthritis16. The SVM algorithm may be extended as Support Vector 172 

Regression (SVR) and Support Vector Clustering (SVC), which are used for regression and cluster 173 

analysis, respectively52,53.  174 

 175 

 176 

 177 

Figure 2. (A) Structure of ANN, (B) Data classification using SVM, (C) Structure of DT 178 

algorithm, and (D) Cluster analysis through K-means clustering. 179 
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1.2.5 Machine Learning Models: Decision Trees 180 

Many ML algorithms are considered black box models. The user has inputs and outputs details, 181 

but the model’s inner mechanism is unknown. In contrast, decision tree algorithms are intuitive, 182 

and the concepts underlying the family of algorithms are comparatively easier to understand. DTs 183 

are supervised ML algorithms and are widely used for data classification54. They break a complex 184 

decision-making process into a network of simpler decisions and have a hierarchical tree structure 185 

with nodes and branches, as illustrated in Figure 2C. The entire dataset enters the DT at the root 186 

node, traverses through decision nodes, and ends at leaf nodes. The nodes and branches are 187 

recursively built until all the data instances in a leaf node belong to the same category. Each 188 

decision node is a function of attributes that splits the data into smaller subsets. Although DTs are 189 

predominantly used for classification, they can solve regression problems. DT algorithms are 190 

utilized in healthcare for data mining, automated diagnosis, and medical image and data 191 

classification55-58. Within orthopedics, DTs are employed in spinal column injury cases to create 192 

homogeneous clusters of patients and study the true effects of treatment59.   193 

1.2.6 Machine Learning Models: K-means Clustering 194 

In contrast to classification algorithms that use predefined labels, clustering algorithms are 195 

unsupervised. K-means clustering is a prominent unsupervised ML algorithm for cluster analysis60. 196 

The algorithm starts by creating k random centroids that determine the number of clusters in the 197 

dataset. An instance of data is assigned to a cluster with the nearest centroid.  Figure 2D shows the 198 

dataset separated into three clusters. The centroids are iteratively updated with the arithmetic mean 199 

position, and the data is reassigned based on the updated centroids of clusters. K-means clustering 200 

does not require labeling of training data, guarantees convergence, and can handle big data61. One 201 

drawback of this algorithm is that input data representation and the random initialization of 202 
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centroids influences the output. K-means clustering has been applied for knowledge discovery in 203 

healthcare, clustering of patient disease data, and medical image segmentation62-64. Previously, k-204 

means clustering has been used to classify patient images of intertrochanteric fractures into five 205 

distinct fracture types65.  206 

1.3 Corrosion in the Human Body 207 

Corrosion occurs at the biology-device interface in-vivo and is associated with clinical failure29. 208 

In the past three decades, retrieval studies have documented corrosion in the modular tapers of 209 

total hip replacement devices22-24,32,33,66-69. The use of modular taper designs in orthopedic 210 

implants began in the 1980’s and has continued to be a foundational design element in total hip 211 

implants.  Within the taper region of a total hip replacement, the femoral head and neck of the 212 

stem form a crevice when assembled. Both the head and stem interfaces are in close proximity 213 

and create a small volume where physiological solution can be present. When a patient cyclically 214 

loads their implant (i.e., walking), asperities (high points that inevitably arise on manufactured 215 

metal surfaces) on the two interfaces may abrade the passive oxide film covering CoCrMo, Ti-216 

alloy and stainless-steel alloys, resulting in a high rate of corrosion at the metal-solution interface 217 

until the oxide film repassivates, typically within a few milliseconds. This cyclic abrasion, when 218 

sliding distances are 100 µm or less is defined as fretting, and along with the synergistic effects 219 

of solution chemistry, pH, and cathodic activation (i.e., negative potentials that arise from oxide 220 

film disruption), is responsible for most severe corrosion documented in vivo25,70-74. The 221 

combined phenomenon of wear and crevice corrosion is known as mechanically assisted crevice 222 

corrosion, or tribocorrosion and it is hypothesized to promote an auto-catalytic behavior, 223 

promoting further corrosion damage in vivo25.  224 
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In this review, we separate MACC into mechanical (i.e., fretting) and chemical damage modes 225 

(crevice corrosion and pitting). Because few research articles exist on predicting corrosion 226 

damage modes in the context of orthopedic biomaterials, we broadened our literature review to 227 

include all fields of corrosion. We investigated the following research questions: First, how are 228 

researchers using AI to predict clinically relevant corrosion damage modes in vitro? Next, how 229 

can this in vitro benchwork be translated to improve clinical outcomes?  230 

1.4 Fretting in vivo 231 

Fretting corrosion damage (Figure 3A-D) has been documented at modular taper junctions, and 232 

acetabular interfaces of orthopedic devices. This damage can generate metallic debris that may 233 

induce adverse local tissue responses and promote periprosthetic osteolysis or soft-tissue 234 

reactions including pseudotumors, fluid cysts and necrotic masses75,76. When fretting occurs in 235 

an aqueous environment in vivo in combination with cyclic loading, clinical failure may occur. 236 

On retrieved devices, fretting corrosion damage can be classified using the Goldberg score33, a 237 

visual assessment to quickly quantify the amount of corrosion on an orthopedic component. 238 

Devices’ scores range from one to four depending on the presence and severity of wear debris, 239 

pitting, and surface discoloration. Total corroded surface area of the device may also be used to 240 

distinguish between the various Goldberg scores. The mechanisms of fretting corrosion have 241 

been extensively modeled and explored in vitro, helping to create improved pre-clinical 242 

orthopedic device tests21,71,72,77-79.  243 
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 244 

Figure 3. Digital optical images of fretting corrosion on (A) exterior femoral taper and (B) 245 

interior femoral head surfaces; (C) SEM backscattered electron micrograph of femoral taper. 246 

Note the accumulation of oxide (dark regions) between the machined metal (bright) ridges; (D) 247 

SEM micrograph of fretting scars on the interior taper of a femoral head. From Goldberg JR, 248 

Gilbert JL, Jacobs JJ, Bauer TW, Paprosky W, Leurgans S. A multicenter retrieval study of the 249 

taper interfaces of modular hip prostheses. Clinical Orthopaedics and Related Research®. 250 

2002;401:149-161. 251 

1.5 Crevice Corrosion in vivo 252 

While the wear damage modes associated with MACC (i.e., fretting) have been replicated in 253 

vitro, the mechanisms of crevice corrosion damage modes observed on orthopedic retrievals 254 

remain comparatively unexplored and unelucidated. Within the modular taper junctions of 255 

femoral heads and stems, the formation of thick oxide films, selective dissolution, and hydrogen 256 

embrittlement, have been documented on Ti-6Al-4V interfaces28,32. Additionally, columnar 257 

Prep
rin

t



damage, selective dissolution and phase boundary corrosion have all been observed on CoCrMo 258 

orthopedic devices80.  259 

Though tribology initially abrades the passive oxide film, promoting oxidation and redox 260 

reactions, it is hypothesized that alterations to the physiological solution and surface potential 261 

affects the development of these damage modes in vivo. Deaeration of the crevice, cathodic 262 

activation of the surface, and the generation of oxidizers at the solution-device interface may all 263 

be necessary to reproduce crevice corrosion damage modes25. Indeed, studies show that the 264 

combination of cathodic activation and inflammatory species induce selective dissolution of the 265 

Ti-6Al-4V β phase in vitro81,82. Digital images of orthopedic device and SEM micrographs 266 

showing various crevice corrosion damage modes can be seen in Figure 4A-D.  267 

 268 
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Figure 4. (A) Ti-6Al-4V modular taper sleeve showing severe crevice corrosion; (B-D) 269 

Micrographs of crevice corrosion damage modes on Ti-6Al-4V. Note the preferential dissolution 270 

of the Ti-6Al-4V β phase in (C) and the etching in (B) and (D). Apart from selective dissolution, 271 

these damage modes have not been recapitulated in vitro. Images of the modular taper sleeve in 272 

(A) are reproduced from Rodrigues DC, Urban RM, Jacobs JJ, Gilbert JL. In vivo severe 273 

corrosion and hydrogen embrittlement of retrieved modular body titanium alloy hip‐implants. 274 

Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of 275 

The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society 276 

for Biomaterials and the Korean Society for Biomaterials. 2009;88(1):206-219. 277 

 278 

1.6 Pitting in vivo 279 

Pits have been documented on retrieved CoCrMo surfaces and are found within crevice 280 

containing regions like modular junctions or immediately adjacent to crevice containing regions 281 

29. Pitting on Ti-6Al-4V in vivo (Figure 5A-D) was not considered possible until recently and has 282 

not been replicated in vitro to date32. Micrographs of Ti-6Al-4V femoral stems show pits 500 µm 283 

wide. When cross sectioned, these pits reveal selective dissolution of the Ti-6Al-4V β phase. 284 

Thus in vivo pitting on Ti-6Al-4V may be promoted by crevice corrosion conditions.  285 
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 286 

Figure 5. (A-D) SEM micrographs of various pitting morphologies on retrieved Ti-6Al-4V 287 

devices. Note the variability in pit diameter. To date, the mechanism of Ti-6Al-4V pitting has not 288 

been elucidated under physiologically representative conditions. The micrograph in (A) is 289 

reproduced from Gilbert JL, Mali S, Urban RM, Silverton CD, Jacobs JJ. In vivo oxide‐290 

induced stress corrosion cracking of Ti‐6Al‐4V in a neck–stem modular taper: Emergent 291 

behavior in a new mechanism of in vivo corrosion. Journal of Biomedical Materials Research 292 

Part B: Applied Biomaterials. 2012;100(2):584-594. 293 

2. Methods 294 

The Web of Science and Scopus databases were queried with the following topic search terms: 295 

“Fretting” AND “Artificial intelligence” OR “Fretting” AND “Machine Learning”, “Crevice 296 
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corrosion” AND “Artificial intelligence” OR “Crevice corrosion” AND “Machine Learning”, 297 

and “Pitting corrosion” AND “Artificial intelligence” OR “Pitting corrosion” AND “Machine 298 

Learning”.  We selected these two databases and formed search terms to capture AI/ML 299 

manuscripts that relate to physiologically relevant damage modes even if the application in the 300 

selected works were outside the scope of orthopedics. When needed, corrosion damage modes 301 

and AI were queried both separately and together with ML to increase search rigor. For example, 302 

in Scopus, we searched (1) “Fretting” AND “Artificial intelligence” OR “Fretting” AND 303 

“Machine Learning”, (2) “Fretting” AND “Artificial intelligence”, and (3) “Fretting” AND 304 

“Machine Learning” to capture all relevant research articles.   305 

Research studies were excluded from the review if the title or abstract was not relevant to 306 

corrosion and AI (ie: when querying “Fretting” AND “Artificial intelligence”, we incidentally 307 

returned research articles that described fluorescence resonance energy transfer (FRET) and AI. 308 

These studies were excluded from the review). We additionally excluded non-english studies, 309 

duplicate research studies, and studies tangentially related to the corrosion damage modes we 310 

focused on. We included theses and conference proceedings that presented substantially more 311 

work when compared with similarly titled publications from the same authors. Finally, we 312 

excluded patents. We performed our search on August 26, 2022. Database searches were 313 

augmented with relevant research articles, theses and conference proceedings that were not 314 

indexed in either Web of Science or SCOPUS. In this systematic approach, we prioritized 315 

presenting the most up to date research, augmenting queried articles with relevant literature. 316 

Complete details of our systematic approach can be found in Figure 6. 317 

 318 

 319 
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 357 

Figure 6. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) flow 358 

diagram showing identification, screening, and eligibility processes involved in identifying 359 

relevant AI/Corrosion research studies.  360 
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2.1 Data Extraction 361 

Three independent researchers manually extracted the following data from each research article: 362 

author, title, year published, biomaterial investigated, corrosion damage mode, in vitro vs. in 363 

vivo, model learning type, prediction type, and ML models used. One additional researcher 364 

reviewed the data reported in standard data extraction tables (Tables 1-3). Attention was paid to 365 

whether the ML model used supervised or unsupervised learning and whether the output 366 

prediction was calculated via regression or classification.  Various studies we analyzed referred 367 

to subclassifications of ML models. For instance, investigators labeled the neural network model 368 

they used as feed-forward (FF-NN) or back propagated (BP-NN). For homogeneity of 369 

nomenclature, we classified the ML model used in each research study with the broader umbrella 370 

term, in this case, artificial neural network (ANN).   371 

After extracting the ML models from the “Pitting corrosion” AND “Artificial intelligence” Web 372 

of Science search, four models across the research articles were selected to define in the 373 

introduction including neural networks, support vector machines, decision trees, and k-means 374 

clustering.  375 

3. Results 376 

3.1 Fretting 377 

3.1.1 Fretting of Orthopedic Biomaterials 378 

Of the three corrosion damage modes investigated in this review, fretting corrosion had the most 379 

existing AI/ML literature directly applicable to orthopedic devices. Here we contrast two 380 

retrieval analysis studies that are relevant to this review but were not returned in our database 381 

queries. Milimonfared et al. and Codirenzi et al. both use AI to classify fretting damage on 382 
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femoral tapers, predicting the Goldberg score associated with the documented damage83,84. Of 383 

the 138 stems Milimonfared et al. investigated, 39% were CoCr, 30%, were stainless steel and 384 

23% were titanium or titanium alloys85. Tapers were imaged eight times to generate a dataset of 385 

1104 images. After hyper-parameter tuning, their SVM accurately classified the Goldberg score 386 

of the modular taper with 85% accuracy. Codirenzi et al. trained a neural network on images 387 

generated from 725 retrieved femoral stems. Digital optical microscopy captured 4 images per 388 

stem, generating a data set of 2890 unique images. Of the stems analyzed, 47% were titanium, 389 

46% were CoCr and 7% were stainless steel. Classification accuracy of the 4 Goldberg scores 390 

was comparatively worse (48.21 %) than the SVM approach employed by Milimonfared et al. 391 

However, accuracy improved to 98% when the NN was tasked with differentiating between mild 392 

(Goldberg 1 & 2) and severe (Goldberg 3 & 4) fretting corrosion categories.  393 

3.1.2 Fretting AI Models 394 

Artificial neural networks were the most popular ML model implemented to evaluate fretting (n 395 

= 10/12, 83%). SVM was the second most used model (n = 3/12). It is important here to note that 396 

it is common for AI studies to implement multiple model types and compare their performance. 397 

While only one study investigating fretting corrosion implemented this approach (using both 398 

ANN and SVM), both pitting and crevice corrosion AI studies implemented multiple ML models 399 

with increased frequency.  400 

Of the metals investigated, 25% (3/12) included at least one metallic biomaterial. Various grades 401 

of steel were used as either counter or bearing surfaces in 75% (9/12) of fretting applications. All 402 

research was conducted in vitro, though three of the studies we analyzed were revision studies, 403 

involving total hip replacement devices that were previously in patients. Every reported AI 404 

approach involved some aspect of supervised learning. A test dataset was generated with a 405 
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ground truth and used to predict either a categorical or continuous outcome. 83% (n=10/12) 406 

regressed a continuous output while 17% (n = 2/12) predicted classification. Fretting volume loss 407 

was a commonly reported outcome for regression models while all classification models 408 

predicted Goldberg score. The complete details of the extracted data can be found in Table 1.  409 

3.2 Crevice Corrosion AI Models 410 

Queries for crevice corrosion and ML/AI returned 5 papers after screening and exclusion criteria 411 

were applied. Of the five studies reviewed, only one used an orthopedic biomaterial candidate 412 

(316L Stainless steel). While we have opted to include the Rosen et al. work in both Tables 2 and 413 

3, as they study both pitting and crevice corrosion, we have made sure not to double count it in 414 

our analysis or figures. All the crevice corrosion studies used supervised AI models, with 60% (n 415 

= 3/5) using regression-based models and 40% (n = 2/5) performing classification. AI models 416 

used included ANN (n = 3/5), decision trees (n = 1/5), KNN (n = 1/5) and gaussian processes (n 417 

= 1/5). All five studies were performed outside the context of orthopedic biomaterials, and 418 

predicted outcomes included the presence of crevice corrosion (n = 2/5) and various outputs 419 

related to severity of crevice corrosion damage (material loss, corrosion rate, initiation, and 420 

propagation of crevice corrosion). Full details of extracted data may be found in Table 2. 421 

3.3 Pitting Corrosion AI Models 422 

Pitting corrosion research accounted for 68% (n = 34/50) of the studies evaluated in this review. 423 

Common topic areas included pipeline corrosion, building corrosion, marine infrastructure, and 424 

environmental degradation. 12% (n = 4/34) of studies used a biomedical alloy, in this case 316L 425 

Stainless steel. However, every pitting corrosion study we investigated was conducted outside 426 
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the scope of biomedicine. Many metals studied (eg: API 5L X52 Steel) were targeted towards 427 

pipeline usage, or the oil and gas industry.  428 

Most (94%, n = 32/34) investigators implemented supervised machine learning models. Popular 429 

model types included ANN (59%, n = 20/34), SVM (50%, n = 17/34), decision trees (21%, n = 430 

7/34) and K-NN (18%, n = 6/34). Two studies utilized unsupervised approaches, using the non-431 

negative matrix factorization and the k-means algorithm for clustering, respectively. 56% of 432 

studies (n = 20/34) used classification models, while 44% (n = 15/34) regressed a continuous 433 

variable as their outcome. These values add to over 100% because one study implemented both 434 

regression and classification. This ratio was much higher than fretting AI studies, where 435 

regression accounted for almost all the models implemented. 47% (n = 16/34) of investigators 436 

applied more than one AI model in their study. Pitting potential (Epit), the presence or grade of 437 

pitting on a surface, and pit depth were all common model predictions. Complete details of the 438 

extracted data relating to pitting corrosion may be found in Table 3. The number of studies 439 

examining each corrosion damage mode as well as a breakdown of common AI models 440 

implemented per corrosion damage mode can be seen in Figure 7A-B. 441 Prep
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 442 

Figure 7. (A) The number of studies investigated in the review by corrosion damage mode; (B) 443 

A breakdown of the number of articles that implement a DT, ANN, or SVM AI model by 444 

corrosion damage mode. 445 

4. Discussion 446 

Of the 50 articles we systematically reviewed, seven involved orthopedic biomaterials. This 447 

comparative lack of studies related to orthopedics may be due to several factors. First, 448 

implementation of AI models often requires interdisciplinary collaboration between subject 449 

matter experts (biomaterials, orthopedics, corrosion, etc.) and those with domain expertise in 450 

AI/ML. Expertise in one subject matter, however, may not be enough to design an AI 451 

experiment, choose and implement a successful model, and disseminate that information clearly 452 

and concisely such that others may be able to build off the study or implement the model onto a 453 

new dataset. Similarly, those with AI expertise may be far removed from the clinic, lacking the 454 

skills and knowledge to identify gaps in clinical care, or identify target areas that AI can 455 
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improve. Clinicians and basic science researchers armed with a fundamental, if high-level, 456 

overview of AI paired with data scientists who appreciate the pain points in clinical care may be 457 

able to generate and implement AI models that can make an impact in the clinic. The NSF has 458 

recognized the importance of interdisciplinary collaborations, launching funding programs 459 

targeted towards implementing translational AI that can affect clinical outcomes. 460 

Our database searches returned more pitting corrosion studies than crevice corrosion or fretting 461 

corrosion. This is largely because pitting is one of the primary mechanisms of material loss and 462 

failure for steel pipelines86,87. While corrosion failure of a medical device may or may not induce 463 

clinical failure for a single patient, corrosion failure of a pipeline can cause multiple deaths and 464 

environmental consequences, with the societal cost estimated in the billions of dollars86-89. 465 

Additionally, access to real-world data are more readily available for oil and gas studies. Pipeline 466 

steel may be evaluated using a potentiostat, and corrosion damage can be reproduced in 467 

environments that are representative of the atmospheric or soil conditions the alloys interact with 468 

in real-world use. In contrast, collecting corrosion data in vivo is a challenge, and recapitulating 469 

the complex factors that occur at the device biology interface in vitro remains a gap.  470 

Severe corrosion documented on orthopedic retrievals is associated with mechanically assisted 471 

crevice corrosion. For metals used in total hip arthroplasties, including titanium and cobalt 472 

chrome alloys, pitting is induced by a complex combination of solution chemistry, oxide 473 

structure and function, and the biology present at the metal interface90. Unlike steel alloys, 474 

including 316L, cobalt chrome and titanium alloy pitting cannot be reproduced in vitro by 475 

statically applying a specific breakdown or pitting potential. Many models exist for wear and 476 

tribocorrosion of titanium and cobalt chrome alloys. However, few in vitro tests exist that induce 477 

crevice corrosion damage modes, including hydrogen embrittlement, pitting, and oxide 478 
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accumulation. Indeed, the FDA identified the lack of effective pre-clinical crevice corrosion tests 479 

as a gap in a 2019 white paper91. Thus, a lack of AI implementation to crevice corrosion 480 

experiments in the context of biomaterials may be explained by the comparatively poor ability to 481 

reproduce crevice corrosion in the lab under physiologically relevant conditions.  482 

While gaps exist in our ability to model clinically relevant corrosion damage modes outside the 483 

human body, several studies we examined in this review may provide insight into how to identify 484 

critical variable spaces for solution chemistries and potentials that more accurately model the 485 

biological milieu. Jimenez et al. implemented both SVM and ANN models to predict the two-486 

dimensional chloride solution concentration and temperature area that would induce pitting 487 

corrosion on 316L Stainless steel92. Jimenez et al. additionally predicted a variable space that 488 

would corrode austenitic stainless steel, training their model with four variables: chloride ion 489 

concentration, pH, critical pitting potential and temperature93,94. 490 

The current paradigm for generating pre-clinical data as well as material selection for orthopedic 491 

devices is to evaluate the corrosion properties of metal samples or devices in saline solutions. 492 

Though these electrolytes may match the isotonic properties of the in vivo environment, they fail 493 

to include the array of lymphocytes, macrophages and proteins that are attracted to the device 494 

once implanted. When confronted with a foreign body (ie: the implant), lymphocytes and 495 

macrophages can promote oxidizers including hydrogen peroxide, hydroxide radicals 496 

peroxynitrites, hypochlorous acid and hydrochloric acid at the device interface90. Fretting, a 497 

common phenomenon in modular taper designs, may provide an additional source of ROS95. 498 

What is currently being modeled with salt water is a multi-dimensional variable space and our 499 

simplification of the in vivo solution presents a challenge when trying to understand the 500 

mechanisms of crevice corrosion damage modes in vitro. AI, and in particular, SVM and ANN 501 
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models may help to elucidate the critical solution concentrations of ROS and pH that are 502 

necessary to induce crevice corrosion damage modes in vitro, reducing the experimental time 503 

and number of tests needed. Besides mechanistic understanding, a more representative testing 504 

solution would aid in detecting poor device designs prior to clinical use. 505 

The ability for AI to classify images of corrosion damage in vitro may have the ability to impact 506 

clinical care. In this study, we reviewed two retrieval programs that implemented AI models to 507 

classify fretting corrosion on femoral tapers. We additionally reviewed various in vitro models 508 

that classified corrosion damage modes from image-based data. One retrieval study used digital 509 

optical microscopy to generate their dataset and the second study classified digital photographs 510 

of the taper surface83-85. This latter approach is closer to the original application of the Goldberg 511 

score, a method intended for the classification of modular taper corrosion damage based upon a 512 

quick visual assessment33. While these orthopedic devices were removed from the patient and 513 

cleaned before imaging, the ability to classify the corrosion damage on a taper mid-revision may 514 

decrease the time needed for surgery and improve clinical outcomes. Mid-revision, the surgeon 515 

separates the femoral head from the femoral stem and must decide whether to replace just the 516 

head, or both femoral components. Replacing the stem is an invasive process and can result in 517 

increased complications when patients have poor bone density and bone volume loss. Applying 518 

this classification model to photos of the taper would provide additional information to the 519 

surgeon, improving decision making in the operating room.  520 

Many studies we reviewed applied AI to classify and predict corrosion damage modes from non-521 

image-based data. Morizet et al. classified crevice corrosion from acoustic emission signals96. 522 

Rosen et al. predicted various stages of pitting, general, and crevice corrosion damage on 316L 523 

stainless steel using features extracted from polarization scans97. Recent studies show that 524 
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corrosion damage modes on retrieved orthopedic devices have unique electrochemical 525 

impedance spectroscopy (EIS) signatures98,99. With the miniaturization of potentiostats (pocket 526 

potentiostats) the near field EIS method may be a way to classify corrosion damage modes in the 527 

absence of imaging, providing decision support to surgeons and researchers. However further 528 

research is required. Future studies would need to build a dataset of near field EIS signatures on 529 

retrievals before AI implementation.  530 

5. Summary 531 

In this review, we systematically evaluated the existing corrosion AI literature, looking for 532 

applications of AI/ML models on physiologically relevant corrosion damage modes. We 533 

identified several experimental designs that may be implemented on orthopedic biomaterials 534 

including classifying pitting, fretting, and crevice corrosion damage modes from image and non-535 

image-based data as well as predicting critical variable conditions that promote corrosion. 536 

Understanding the models that are successful in the broader corrosion literature may aid in 537 

developing basic science studies that have translational potential.  538 

6. Clinical Care Points 539 

• AI is already being used in the clinic and can improve patient outcomes 540 

• While there have been some successes, there is a lack of translational studies beginning at 541 

a basic science level 542 

• The broader corrosion field has rapidly adopted AI models for the prediction of corrosion 543 

damage modes that are relevant to orthopedics.  544 

• Translating these models to investigate orthopedic alloys has the potential to improve 545 

pre-clinical device testing and provide decision support to clinicians.   546 
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• Fully delivering on the promise of AI in orthopedics may require increased collaboration 547 

and transfer of knowledge between clinicians, basic science researchers and data 548 

scientists.  549 
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7. Tables 567 

Table 1. Extracted data from fretting corrosion articles. 568 

Author Title Year 
Published 

Material 
Investigated 

Corrosion 
Damage 
Mode 

Experiment 
Mode (in 
vitro vs in 
vivo) 

Supervised or 
unsupervised 
learning? 

Regression or 
classification? 

ML 
Approach 

Predicted Outcome 

Buck, J.A.100 Evaluation of machine 
learning tools for 

inspection of steam 
generator tube structures 
using pulsed eddy current 

2017 Alloy-800 (iron 
nickel chromium 

alloy) 

Fretting in vitro Supervised Regression SVM, 
ANN 

Support structure hole size, tube 
off-centering in two dimensions 

(one dimension containing 
variable fret depth), and fret 

depth 

Codirenzi, A.83 Large-scale analysis and 
automated detection of 

trunnion corrosion on hip 
arthroplasty devices 

2022 CoCr, Stainless 
Steel, Titanium 

Fretting Explant 
analysis 

Supervised Classification ANN No and mild corrosion to 
moderate and severe corrosion 

in correspondence with Goldberg 
score 

Gorji, M.B.101 Machine learning predicts 
fretting and fatigue key 
mechanical properties 

2022 C-Mn steel Fretting in vitro Supervised Regression ANN Crack lengths and corresponding 
stress intensity factors under 

partial slip conditions resulting in 
crack arrest  

Haviez, L.102 Semi-physical neural 
network model for 

fretting wear estimation 

2015 Two chromium-
molybdenum 

stainless steels: 
one carburized 
stainless steel 

and one stainless 
steel with mass 

quenching 

Fretting in vitro Supervised Regression ANN Wear volume 

Kolodziejczyk, 
T.103 

Artificial intelligence as 
efficient technique for 

ball bearing fretting wear 
damage predication 

2010 Chromium steel Fretting in vitro Supervised Regression ANN Wear volume 

Anand Kumar, 
S.104 

Prediction of fretting 
wear behavior of surface 

mechanical attrition 
treated Ti-6Al-4V using 
artificial neural network 

2013 Treated and 
untreated Ti-6Al-
4V, alumina and 

steel counter 
bodies 

Fretting in vitro Supervised Regression ANN Tangential force coefficient, 
fretting wear volume, and wear 

rate 

Milimonfared, 
R.85  

Development and 
implementation of an 
artificial intelligence 
system for assessing 
corrosion damage at 

stem taper of hip 
replacement implants: A 

retrieval study 

2019 CoCr, Stainless 
Steel, Titanium 

Fretting Explant 
analysis 

Supervised Classification SVM Corrosion damage rate in 
correspondence with Goldberg 

scoring 

Nowell, D.105 A machine learning 
approach to the 

prediction of fretting 
fatigue life 

2020 Al 4%Cu alloy Fretting in vitro Supervised Regression ANN Total fretting fatigue life 

Ozarde, 
A.P.106 

Optimization of diesel 
engine's liner geometry 
to reduce head gasket's 

fretting damage 

2021 Steel Fretting in vitro Supervised Regression ANN Ruiz parameters for fretting 
fatigue damage 

Qureshi, 
W.107 

Prediction of fretting 
wear in aero-engine 

spline couplings made of 
42CrMo4 

2016 42CrMo4 Fretting in vitro Supervised Regression ANN Fretting wear 

Sharma, M.108 Studies for wear property 
correlation for carbon 
fabric-reinforced PES 

composites 

2011 PES composites           
52100 steel ball 

Fretting in vitro Supervised Regression ANN Wear rate and coefficient of 
friction 

Zhang, G.109 Predicting running-in 
wear volume with a 

SVMR-based model under 
a small amount of 
training samples 

2018 1050 steel (pin)               
52100 steel 

(disc) 

Wear (Pin 
on disk 
model) 

in vitro Supervised Regression SVM Wear volume 
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Author Title Year 
Published 

Material 
Investigated 

Corrosion 
Damage 
Mode 

Experiment 
Mode (in 
vitro vs. in 
vivo) 

Supervised or 
unsupervised 
learning? 

Regression or 
classification? 

ML 
Approach 

Predicted Outcome 

Bansal, P.110 Physics-informed 
machine learning 

assisted uncertainty 
quantification for the 
corrosion of dissimilar 

material joints 

2022 Fe-Al Joints Galvanic, 
Crevice 

Corrosion 

in vitro Supervised Regression Gaussian 
process 

model with 
probabilistic 
confidence-
based based 

adaptive 
sampling 

Material loss 

Kamrunnahar, 
M.111 

Prediction of 
corrosion behavior of 
Alloy 22 using neural 

network as a data 
mining tool 

2011 Alloy 22                    
(Ni -22Cr -

14Mo -3W) 

General & 
crevice 

corrosion 

in vitro Supervised Regression ANN Corrosion rate, crevice 
repassivation potential, 

impedance values 

Morizet, N.96 Classification of 
acoustic emission 

signals using wavelets 
and Random Forests: 

Application to 
localized corrosion 

2016 304 L Stainless Crevice 
corrosion 

in vitro Supervised Classification Decision 
trees, KNN 

Crevice corrosion or no corrosion 
classes 

Rosen, E.M.97 Corrosion prediction 
from polarization 

scans using an 
artificial neural 

network integrated 
with an expert system 

1992 Hastelloy C-
276, 316 
Stainless 

Steel, 

Pitting, 
Crevice 

Corrosion, 
General 

Corrosion 

in vitro Supervised Classification ANN Presence of pitting corrosion, 
crevice corrosion, and whether 

general corrosion should be 
considered. 

Trasatti, 
S.P.112 

Crevice corrosion: a 
neural network 

approach 

1996 Various 
stainless 

steels 

Crevice 
corrosion 

in vitro Supervised Classification Artificial 
neural 

network 

Initiation and propagation of 
Crevice corrosion 
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Table 3. Extracted data from Pitting corrosion articles. 596 

Author Title Year 
Published 

Material 
Investigated 

Corrosion 
Damage 
Mode 

Experiment 
Mode (in 
vitro vs in 
vivo) 

Supervised or 
unsupervised 
learning? 

Regression or 
classification? 

ML Approach Predicted 
Outcome 

Agrawal, 
R.113 

The use of machine 
learning and 

metaheuristic 
algorithm for wear 

performance 
optimization of AISI 

1040 steel and 
investigation of 

corrosion resistance 

2022 AISI 1040 
Steel 

Wear, Pitting in vitro Supervised Regression ANN Process 
parameters, 

wear rate 

Ahuja, 
S.K.114 

Optimized deep 
learning framework 
for detecting pitting 
corrosion based on 

image segmentation 

2021 
 

Pitting in vitro Supervised Classification 
  

Ampazis, 
N.115 

Prediction of Aircraft 
Aluminum Alloys 

Tensile 
Mechanical 
Properties 

Degradation 
Using Support Vector 

Machines 

2010 Al 2024-T3 
Aluminum 

Alloy 

Pitting in vitro Supervised Regression SVM Yield strength, 
Tensile strength, 

elongation to 
fracture, strain 
energy density 

Ben 
Seghier, 
M.E.A116 

Advanced intelligence 
frameworks for 

predicting maximum 
pitting corrosion 

depth in oil and gas 
pipelines 

2021 Not specified, 
Stainless Steel 

Pitting in vitro Supervised Regression ANN, Decision 
Tree, 

Multivariate 
Adaptive 

Regression 
Splines, 
Locally 

Weighted 
Polynomials, 

Kriging, 
Extreme 
Learning 
Machines 

Maximum pitting 
corrosion depth 

Boucherit, 
M.N.117 

Pitting corrosion 
prediction from 
cathodic data: 
application of 

machine learning 

2021 Carbon Steel Pitting in vitro Supervised Regression ANN Pitting Potential 

Boucherit, 
M.N.118 

Modelling input data 
interactions for the 

optimization of 
artificial neural 

networks used in the 
prediction of pitting 

corrosion 

2019 0.2% Carbon 
Steel 

Pitting in vitro Supervised Regression ANN Pitting Potential 

Boukhari, 
Y.119 

Optimization of 
learning algorithms in 

the prediction of 
pitting corrosion 

2018 0.18% Carbon 
Steel 

Pitting in vitro Supervised Regression ANN, SVM, K-
NN, Decision 

Tree 

Pitting Potential 

Boukhari, 
Y.120 

Artificial Intelligence 
to Predict Inhibition 

Performance of 
Pitting Corrosion 

2017 0.18% Carbon 
Steel 

Pitting in vitro Supervised Regression ANN, SVM, K-
NN, Decision 

Tree, KBP, 
LDA, Adaptive 

neuro-fuzzy 
inference 
systems 

Pitting Potential 

Chou, J. 
S.121 

The use of artificial 
intelligence 

combiners for 
modeling steel pitting 

risk and corrosion 
rate 

2017 Steel Rebar, 
3C Steel 

Pitting in vitro Supervised Regression ANN, SVM, 
Decision Tree, 

Linear 
Regression 

Pitting corrosion 
risk, corrosion 

rate 

Enikeev, 
M.122 

Machine learning in 
the problem of 

recognition of pitting 
corrosion on 

aluminum surfaces 

2018 Aluminum Pitting in vitro Supervised Classification SVM Hydrogen bubble 
detection 

Hoang, 
N.D.123 

Image Processing-
Based Pitting 

Corrosion Detection 
Using Metaheuristic 
Optimized Multilevel 
Image Thresholding 

and Machine-
Learning Approaches. 

2020 Not specified Pitting in vitro Supervised Classification SVM, Decision 
Trees, ANN 

Detection of pits 
in images 
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Ji, J.124 Prediction of stress 
concentration factor 
of corrosion pits on 

buried pipes by least 
squares support 
vector machine 

2015 Not specified Pitting in vitro Supervised Regression SVM Stress 
concentration 

factor 

Jimenéz-
Come, 
M.92 

An automatic pitting 
corrosion detection 
approach for 316L 

stainless steel 

2013 316L Stainless 
Steel 

Pitting in vitro Supervised Classification ANN, SVM, 
Decision Tree, 

KNN 

Solution 
temperatures 

and 
concentrations 

that induce 
pitting corrosion 

Jimenéz-
Come, 
M.93 

Pitting corrosion 
behavior of austenitic 
stainless steel using 
artificial intelligence 

techniques 

2012 EN 1.4404 
Stainless Steel 

Pitting in vitro Supervised Classification Decision 
Trees, 

Discriminant 
Analysis, KNN, 

ANN, SVM 

Environmental 
factors affecting 
pitting corrosion 

Jimenéz-
Come, 
M.94 

Pitting Corrosion 
Detection of 

Austenitic Stainless 
Steel EN 1.4404 in 

MgCl2 solutions using 
a Machine Learning 

Approach 

2012 EN 1.4404 
Stainless Steel 

Pitting in vitro Supervised Classification Decision 
Trees, 

Discriminant 
Analysis, KNN, 

ANN 

Pitting corrosion 
under various 
environmental 

factors 

Jimenéz-
Come, 
M.125 

A support vector 
machine-based 

ensemble algorithm 
for pitting corrosion 

modeling of EN 
1.4404 stainless steel 

in sodium chloride 
solutions 

2018 EN 1.4404 
Stainless Steel 

Pitting in vitro Supervised Classification SVM Environmental 
variable that 

promotes pitting 
corrosion or 
breakdown 
potential 
modelling 

Kankar, 
P.K.126 

Fault diagnosis of ball 
bearings using 

machine learning 
methods 

2010 Ball bearings Pitting in vitro Supervised Classification ANN, SVM Bearing fault 
type 

Kubisztal, 
J.127 

Corrosion damage of 
316L steel surface 

examined using 
statistical methods 
and artificial neural 

network 

2020 316L Stainless 
Steel 

Pitting in vitro Supervised Regression ANN Corrosion 
Degree 

Li, Q.128 Determination of 
Corrosion Types from 
Electrochemical Noise 
by Gradient Boosting 
Decision Tree Method 

2018 X65 Steel, 304 
Stainless Steel 

Passivation, 
Uniform 

Corrosion, 
Pitting 

in vitro Supervised Classification Decision Tree Corrosion Type 

Li, X.129 A Novel Framework 
for Early Pitting Fault 
Diagnosis of Rotating 
Machinery Based on 

Dilated CNN 
Combined With 
Spatial Dropout 

2021 Not specified; 
Gears 

Pitting in vitro Supervised Classification ANN Fault Diagnosis 

Liu, 
K.C.130 

On-stream inspection 
for pitting corrosion 
defect of pressure 

vessels for intelligent 
and safe 

manufacturing 

2017 304 Stainless 
Steel 

Pitting in vitro Supervised Binary 
Classification 

Adaptive 
neuro-fuzzy 

inference 
systems 

Presence of 
pitting Corrosion 

Lu, H.131 A Feature Selection-
Based Intelligent 
Framework for 

Predicting Maximum 
Depth of Corroded 

Pipeline Defects 

2022 Not specified; 
Pipeline 

Pitting in vitro Supervised Regression SVM, eight 
benchmark 

models 

Pitting corrosion 
depth 

Pidaparti, 
R.132 

Neural network 
mapping of corrosion 

induced chemical 
elements degradation 
in aircraft aluminum 

2007 Aluminum 
2024-T3 

Pitting in vitro Supervised Regression ANN Degradation 
behavior due to 
metal corrosion 

Pinto, 
G.133 

Non-intrusive Internal 
Corrosion 

Characterization 
using the Potential 
Drop Technique for 
Electrical Mapping 

and Machine Learning 

2022 AISI 304 Steel Pitting in vitro Supervised Classification, 
Regression 

KNN, SVM, 
Decision 

Trees, 
Gradient 
boosting, 
Extreme 
Gradient 

boosting, ANN 

Damage depth, 
Damage Severity 

Qu, Z.134 Pitting Judgment 
Model Based on 

Machine Learning and 
Feature Optimization 

Methods 

2021 Pipeline 
steels 

Pitting in vitro Supervised Classification SVM, Decision 
Trees, Naive 

Bayes, 
Gradient 

Boosting, KNN 

Occurrence of 
pitting and the 
key factors that 

influence it 
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Rosen, 
E.97 

Corrosion prediction 
from polarization 

scans using an 
artificial neural 

network with an 
integrated expert 

system 

1992 Hastelloy C-
276, 316 
Stainless 

Steel, 

Pitting, 
Crevice 

Corrosion, 
General 

Corrosion 

in vitro Supervised Classification ANN Presence of 
pitting corrosion, 

crevice 
corrosion, and 

whether general 
corrosion should 
be considered. 

Roy, N.135 Effect of 
heterogeneities on 
pitting potential of 
line pipe steels: An 

adaptive neuro-fuzzy 
approach 

2018 Pipeline 
steels, API 
X60 Steel 

Alloys 

Pitting in vitro Supervised Regression Adaptive 
Neuro Fuzzy 

Inference 
System 

Pitting Potential 

Sanchez, 
G.136 

Corrosion grade 
classification: a 

machine learning 
approach 

2019 M4140 Steel Pitting, 
general 

corrosion 

in vitro Supervised Classification SVM, Bag-of-
Features 

Corrosion Grade 

Shin, 
M.137  

A study on the 
condition-based 

maintenance 
evaluation system of 
smart plant device 
using convolutional 

neural network 

2020 Not specified Pitting in vitro Supervised Classification ANN Pitting Corrosion 
Grade 

Takara, 
Y.138 

Analysis of the 
elemental effects on 
the surface potential 

of aluminum alloy 
using machine 

learning 

2022 Al-Mg-Si-Cu 
alloys 

Pitting, 
selective 

dissolution 

in vitro Unsupervised Classification NMF Compound class, 
Matrix Phase 

class 

Urda, 
D.139 

A Constructive Neural 
Network to Predict 
Pitting Corrosion 

Status of Stainless 
Steel 

2013 316L Stainless 
Steel 

Pitting in vitro Supervised Classification ANN, LDA, 
KNN, SVM, 

Naïve Bayes 

Pitting Corrosion 
status 

Wei, X.140 Shear strength 
prediction of TCSWs 
with artificial pitting 

based on ANN 

2021 Steel Pitting in vitro Supervised Regression ANN Shear Strength 

Yajima, 
A.141 

A clustering based 
method to evaluate 
soil corrosivity for 
pipeline external 

integrity 
management 

2014 API 5L X52 
Steel 

Wall 
thickness as 
a proxy for 

pitting 

in vitro Unsupervised Classification k-means 
clustering, 
Gaussian 
mixture 

modeling 

Soil corrosivity 
classes 

Zhang, 
Y.142 

Corrosion pitting 
damage detection of 
rolling bearings using 

data mining 
techniques 

2015 Not specified; 
Rolling 

Bearings 

Pitting in vitro Supervised Classification Support 
Vector Data 
Descriptor, 
ANN, SVM 

Fault Diagnosis 
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