68 research outputs found

    Analysis of the Non-stationarity of Neural Activity during an Auditory Oddball Task in Schizophrenia

    Get PDF
    Producción CientíficaThe aim of this study was to characterize brain dynamics during an auditory oddball task. For this purpose, a measure of the non-stationarity of a given time-frequency representation (TFR) was applied to electroencephalographic (EEG) signals. EEG activity was acquired from 20 schizophrenic (SCH) patients and 20 healthy controls while they underwent a three-stimulus auditory oddball task. The Degree of Stationarity (DS), a measure of the non-stationarity of the TFR, was computed using the continuous wavelet transform. DS was calculated for both the baseline [-300 0] ms and active task [150 550] ms windows of a P300 auditory oddball task. Results showed a statistically significant increase (p<0.05) in non-stationarity for controls during the cognitive task in the central region, while less widespread statistically significant differences were obtained for SCH patients, especially in the beta-2 and gamma bands. Our findings support the relevance of DS as a means to study cerebral processing in SCH. Furthermore, the lack of statistically significant changes in DS for SCH patients suggests an abnormal reorganization of neural dynamics during an oddball task.Ministerio de Economía y Competitividad (TEC2014-53196-R)Junta de Castilla y León (VA059U13

    Exploring non-stationarity patterns in schizophrenia: neural reorganization abnormalities in the alpha band

    Get PDF
    Producción CientíficaObjective. The aim of this paper was to characterize brain non-stationarity during an auditory oddball task in schizophrenia (SCH). The level of non-stationarity was measured in the baseline and response windows of relevant tones in SCH patients and healthy controls. Approach. Event-related potentials were recorded from 28 SCH patients and 51 controls. Non-stationarity was estimated in the conventional electroencephalography frequency bands by means of Kullback-Leibler divergence (KLD). Relative power (RP) was also computed to assess a possible complementarity with KLD. Main results. Results showed a widespread statistically significant increase in the level of non-stationarity from baseline to response in all frequency bands for both groups. Statistically significant differences in non-stationarity were found between SCH patients and controls in beta-2 and especially in the alpha band. SCH patients showed more non-stationarity in the left parieto-occipital region during the baseline window in the beta-2 band. A leave-one-out cross validation classification study with feature selection based on binary stepwise logistic regression to discriminate between SCH patients and controls provided an accuracy of 89.87% and area under ROC of 0.9510. Significance. KLD can characterize transient neural reorganization during an attentional task in response to novelty and relevance. Our findings suggest anomalous reorganization of neural dynamics in SCH during an oddball task. The abnormal frequency-dependent modulation found in SCH patients during relevant tones is in agreement with the hypothesis of aberrant salience detection in SCH. The increase in non-stationarity in the alpha band during the active task supports the notion that this band is involved in top-down processing. The baseline differences in the beta-2 band suggest that hyperactivation of the default mode network during attention tasks may be related to SCH symptoms. Furthermore, the binary stepwise logistic regression procedure selected features from both KLD and RP, supporting the idea that these measures can be complementary.This research project was supported in part by the projects TEC2014-53196-R of ‘Ministerio de Economía y Competitividad’ and FEDER; the project VA037U16 from the “Consejería de Educación de la Junta de Castilla y León”, the “Fondo de Investigaciones Sanitarias (Instituto de Salud Carlos III)” under projects FIS PI11/02203 and PI15/00299; and the “Gerencia Regional de Salud de Castilla y León” under projects GRS 932/A/14 and GRS 1134/A/15. P. Núñez was in receipt of a ‘Promoción de empleo joven e implantación de la Garantía Juvenil en I+D+i’ grant from ‘Ministerio de Economía y Competitividad’ and the University of Valladolid, A. Bachiller and J. Gomez-Pilar were in receipt of a PIF-UVA grant from the University of Valladolid. A. Lubeiro has a predoctoral scholarship from the “Junta de Castilla y León” and European Social Fund

    Novel Measure of the Weigh Distribution Balance on the Brain Network: Graph Complexity Applied to Schizophrenia

    Get PDF
    Producción CientíficaThe aim of this study was to assess brain complexity dynamics in schizophrenia (SCH) patients during an auditory oddball task. For that task, we applied a novel graph measure based on the balance of the node weighs distribution. Previous studies applied complexity parameters that were strongly dependent on network topology. This fact could bias the results besides being necessary correction techniques as surrogating process. In the present study, we applied a novel graph complexity measure from the information theory: Shannon Graph Complexity (SGC). Complexity patterns form electroencephalographic recordings of 20 healthy controls and 20 SCH patients during an auditory oddball task were analyzed. Results showed a significantly more pronounced decrease of SGC for controls than for SCH patients during the cognitive task. These findings suggest an important change in the brain configuration towards more balanced networks, mainly in the connections related to long-range interactions. Since these changes are significantly more pronounced in controls, it implies a deficit in the neural network reorganization in SCH patients. In addition, SGC showed a suitable discrimination ability using a leave-one-out cross-validation: 0.725 accuracy and 0.752 area under receiver operating characteristics curve. The novel complexity measure proposed in this study demonstrated to be independent of network topology and, therefore, it complements traditional graph measures to characterize brain networks.Ministerio de Economía y Competitividad (TEC2014-53196-R)Junta de Castilla y León (VA059U13

    Characterization of Neural Activity using Complex Network Theory. Application to the Identification of the Altered Neural Substrates in Schizophrenia

    Get PDF
    La esquizofrenia es un desorden psiquiátrico caracterizado por alteraciones en el pensamiento y en la capacidad de respuesta emocional. Comprende una gran variedad de síntomas, sin embargo, no está claro que todos compartan un sustrato neurológico común. Por ello, el objetivo de esta Tesis Doctoral es desarrollar un marco de referencia desde la perspectiva de la Teoría de Redes Complejas para investigar las interacciones neurales alteradas de la esquizofrenia haciendo uso de la señal electroencefalográfica. Así, dos bases de datos independientes de registros electroencefalográficos fueron registras durante una tarea cognitiva. Nuestros hallazgos son consistentes con estudios previos al tiempo que muestran una hiperactivación del intervalo de estímulo previa a una reorganización neural disminuida durante la cognición, principalmente asociado a caminos neurales secundarios. Los hallazgos de esta Tesis ponen de manifiesto la gran heterogeneidad de la esquizofrenia, posiblemente asociada a la existencia de subgrupos dentro de la misma.Departamento de Teoría de la Señal y Comunicaciones e Ingeniería TelemáticaDoctorado en Tecnologías de la Información y las Telecomunicacione

    Functional EEG network analysis in schizophrenia: Evidence of larger segregation and deficit of modulation

    Get PDF
    Objective: Higher mental functions depend on global cerebral functional coordination. Our aim was to study fast modulation of functional networks in schizophrenia that has not been previously assessed. Methods: Graph-theory was used to analyze the electroencephalographic (EEG) activity during an odd-ball task in 57 schizophrenia patients (18 first episode patients, FEPs) and 59 healthy controls. Clustering coefficient (CLC), characteristic path length (PL) and small-worldness (SW) were computed at baseline ([−300 0] ms prior to stimulus delivery) and response ([150 450] ms post-stimulus) windows. Clinical and cognitive assessments were performed. Results: CLC, PL and SW showed a significant modulation between baseline and response in controls but not in patients. Patients obtained higher CLC and SW at baseline, lower CLC and higher PL at response, and diminished modulation of CLC and SW as compared to controls. In patients, CLC and SW modulation were inversely associated to cognitive performance in executive tasks and directly associated to working memory. Similar patterns were observed in FEPs. CLC and SW during the baseline were inversely associated to their respective modulation magnitudes. Conclusions: Our results are coherent with a hyper-segregated network at baseline (higher CLC) and a decreased modulation of the functional connectivity during cognition in schizophrenia.This work was supported by the Instituto Carlos III (PI11/02708, PI11/02203 and PI15/00299) and the Gerencia Regional de Salud de Castilla y León (GRS 1134/A/15 and GRS 1263/A/16) grants; the ‘MINECO and FEDER (TEC2014-53196-R), ‘Consejería de Educación de la Junta de Castilla y León’ (VA037U16); and predoctoral fellowships to A. Lubeiro (‘Consejería de Educación Junta de Castilla y León’) and to J. Gomez-Pilar (University of Valladolid)

    Altered predictive capability of the brain network EEG model in schizophrenia during cognition

    Get PDF
    Producción CientíficaThe study of the mechanisms involved in cognition is of paramount importance for the understanding of the neurobiological substrates in psychiatric disorders. Hence, this research is aimed at exploring the brain network dynamics during a cognitive task. Specifically, we analyze the predictive capability of the pre-stimulus theta activity to ascertain the functional brain dynamics during cognition in both healthy and schizophrenia subjects. Firstly, EEG recordings were acquired during a three-tone oddball task from fifty-one healthy subjects and thirty-five schizophrenia patients. Secondly, phase-based coupling measures were used to generate the time-varying functional network for each subject. Finally, pre-stimulus network connections were iteratively modified according to different models of network reorganization. This adjustment was applied by minimizing the prediction error through recurrent iterations, following the predictive coding approach. Both controls and schizophrenia patients follow a reinforcement of the secondary neural pathways (i.e., pathways between cortical brain regions weakly connected during pre-stimulus) for most of the subjects, though the ratio of controls that exhibited this behavior was statistically significant higher than for patients. These findings suggest that schizophrenia is associated with an impaired ability to modify brain network configuration during cognition. Furthermore, we provide direct evidence that the changes in phase-based brain network parameters from pre-stimulus to cognitive response in the theta band are closely related to the performance in important cognitive domains. Our findings not only contribute to the understanding of healthy brain dynamics, but also shed light on the altered predictive neuronal substrates in schizophrenia.This research project was supported in part by “Ministerio de Economía y Competitividad” and FEDER under project TEC2014-53196-R, by ‘European Commission’ (POCTEP 0378_AD_EEGWA_2_P), by ‘Consejería de Educación de la Junta de Castilla y León’ (VA037U16), by “Fondo de Investigaciones Sanitarias (Instituto de Salud Carlos III)” under projects FIS PI11/02203 and PI15/00299, and by “Gerencia Regional de Salud de Castilla y León” under projects GRS 932/A/14 and GRS 1134/A/15. A. Lubeiro was in receipt of a grant from the Consejería de Educación (Junta de Castilla y León). J. Gomez-Pilar was in receipt of a grant from University of Valladolid

    Relation between EEG resting-state power and modulation of P300 task-related activity in theta band in schizophrenia

    Get PDF
    Producción CientíficaThere is some consistency in previous EEG findings that patients with schizophrenia have increased resting-state cortical activity. Furthermore, in previous work, we have provided evidence that there is a deficit in the modulation of bioelectrical activity during the performance of a P300 task in schizophrenia. Our hypothesis here is that a basal hyperactivation would be related with altered ability to change or modulate cortical activity during a cognitive task. However, no study so far, to the best of our knowledge, has studied the association between resting-state activity and task-related modulation. With this aim, we used a dual EEG paradigm (resting state and oddball task for elicitation of the P300 evoked potential) in a sample of patients with schizophrenia (n = 100), which included a subgroup of patients with first episode psychosis (n = 30), as well as a group of healthy controls (n = 93). The study measures were absolute power for resting-state; and spectral entropy (SE) and connectivity strength (CS) for P300-task data, whose modulation had been previously found to be altered in schizophrenia. Following the literature on P300, we focused our study on the theta frequency band. As expected, our results showed an increase in resting state activity and altered task-related modulation. Moreover, we found an inverse relationship between the amount of resting-state activity and modulation of task-related activity. Our results confirm our hypothesis and support the idea that a greater amount of resting theta-band synchrony could hamper the modulation of signal regularity (quantified by SE) and activity density (measured by CS) during the P300 task performance. This association was found in both patients and controls, suggesting the existence of a common mechanism and a possible ceiling effect in schizophrenia patients in relation to a decreased inhibitory function that limits their cortical reactivity to the task

    Characterization of dynamical neural activity by means of EEG data: application to schizophrenia

    Get PDF
    Schizophrenia is a disabling, chronic and severe mental illness characterized by disintegration of the process of thinking, contact with reality and emotional responsiveness. Schizophrenia has been related to an aberrant assignment of salience to external objects and internal representations. In addition, schizophrenia has been identified as a dysconnection syndrome, which is associated with a reduced capacity to integrate information among different brain regions. Relevance attribution likely involves diverse cerebral regions and their interconnections. As a consequence, many efforts have been devoted to identifying abnormalities in the cortical connections and their relation to schizophrenia symptoms and cognitive performance. Neural oscillations are one of the largest contributing mechanism for enabling coordinated activity during normal brain functioning. Alterations in neural oscillations and cognitive processing in schizophrenia have long been assessed using electroencephalographic (EEG) recordings (i.e. time-varying voltages on the human scalp generated by the electrical activity on the cerebral cortex). Event-related potentials (ERP) depict EEG data as a response to a cognitive task. ERP analyses are used to gain further insights into the neural mechanisms underlying cognitive dysfunctions. In this Doctoral Thesis, a 3-stimulus auditory-oddball paradigm was used for examining cognitive processing as response to both relevant and irrelevant stimuli. A total of 69 ERP recordings were analyzed in the research papers included in the Thesis, which comprises 20 chronic schizophrenia patients, 11 first episode patients and 38 healthy controls. This Doctoral Thesis is focused on the study, design and application of biomedical signal processing methodologies in order to facilitate the understanding of cognitive processes altered by the schizophrenia. EEG data were examined using a two-level analysis: (I) local activation studies to quantify functional segregation of the brain network, by means of spectral analysis and by assessing neural source generators of P3a and P3b components; and (II) EEG interactions studies to explore functional integration across brain regions, including pair-wise couplings and exploring hierarchical organization of neural rhythms.Departamento de Teoría de la Señal y Comunicaciones e Ingeniería TelemáticaDoctorado en Tecnologías de la Información y las Telecomunicacione

    Deficits of entropy modulation of the EEG: A biomarker for altered function in schizophrenia and bipolar disorder?

    Get PDF
    peer reviewed[en] BACKGROUND: The synchronized activity of distributed neural assemblies — reflected in the electroencephalogram (EEG) — underpins mental function. In schizophrenia, modulation deficits of EEG spectral content during a P300 task have been replicated. The effects of treatment, chronicity and specificity in these deficits and their possible relationship with anatomic connectivity remain to be explored. METHODS: We assessed spectral entropy modulation of the EEG during a P300 task in 79 patients with schizophrenia (of those, 31 werein their first episode), 29 patients with bipolar disorder and 48 healthy controls. Spectral entropy values summarize EEG characteristics by quantifying the irregularity of spectral content. In a subsample, we calculated the network architecture of structural connectivity using diffusion tensor imaging and graph-theory parameters. RESULTS: We found significant spectral entropy modulation deficits with task performance in patients with chronic or first-episode schizophrenia and in patients with bipolar disorder, without significant pre-stimulus spectral entropy differences. The deficits were unrelated to treatment doses, and spectral entropy modulation did not differ between patients taking or not taking antipsychotics, lithium, benzodiazepines or antidepressants. Structural connectivity values were unrelated to spectral entropy modulation. In patients with schizophrenia, spectral entropy modulation was inversely related to negative symptoms and directly related to verbal memory. LIMITATIONS: All patients were taking medication. Patients with bipolar disorder were euthymic and chronic. The cross-sectional nature of this study prevented a more thorough analysis of state versus trait criteria for spectral entropy changes. CONCLUSION: Spectral entropy modulation with task performance is decreased in patients with schizophrenia and bipolar disorder. This deficit was not an effect of psychopharmacological treatment or structural connectivity and might reflect a deficit in the synchronization of the neural assemblies that underlie cognitive activity

    Topography of activation deficits in schizophrenia during P300 task related to cognition and structural connectivity

    Get PDF
    Background The study of cerebral underpinnings of schizophrenia may benefit from the high temporal resolution of electromagnetic techniques, but its spatial resolution is low. However, source imaging approaches such as low-resolution brain electromagnetic tomography (LORETA) allow for an acceptable compromise between spatial and temporal resolutions. Methods We combined LORETA with 32 channels and 3-Tesla diffusion magnetic resonance (Dmr) to study cerebral dysfunction in 38 schizophrenia patients (17 first episodes, FE), compared to 53 healthy controls. The EEG was acquired with subjects performing an odd-ball task. Analyses included an adaptive window of interest to take into account the interindividual variability of P300 latency. We compared source activation patters to distractor (P3a) and target (P3b) tones within- and between-groups. Results Patients showed a reduced activation in anterior cingulate and lateral and medial prefrontal cortices, as well as inferior/orbital frontal regions. This was also found in the FE patients alone. The activation was directly related to IQ in the patients and controls and to working memory performance in controls. Symptoms were unrelated to source activation. Fractional anisotropy in the tracts connecting lateral prefrontal and anterior cingulate regions predicted source activation in these regions in the patients. Conclusions These results replicate the source activation deficit found in a previous study with smaller sample size and a lower number of sensors and suggest an association between structural connectivity deficits and functional alterations.Postprint (author's final draft
    corecore