10,302 research outputs found

    Data-Driven Deep Learning-Based Analysis on THz Imaging

    Get PDF
    Breast cancer affects about 12.5% of women population in the United States. Surgical operations are often needed post diagnosis. Breast conserving surgery can help remove malignant tumors while maximizing the remaining healthy tissues. Due to lacking effective real-time tumor analysis tools and a unified operation standard, re-excision rate could be higher than 30% among breast conserving surgery patients. This results in significant physical, physiological, and financial burdens to those patients. This work designs deep learning-based segmentation algorithms that detect tissue type in excised tissues using pulsed THz technology. This work evaluates the algorithms for tissue type classification task among freshly excised tumor samples. Freshly excised tumor samples are more challenging than formalin-fixed, paraffin-embedded (FFPE) block sample counterparts due to excessive fluid, image registration difficulties, and lacking trustworthy pixelwise labels of each tissue sample. Additionally, evaluating freshly excised tumor samples has profound meaning of potentially applying pulsed THz scan technology to breast conserving cancer surgery in operating room. Recently, deep learning techniques have been heavily researched since GPU based computation power becomes economical and stronger. This dissertation revisits breast cancer tissue segmentation related problems using pulsed terahertz wave scan technique among murine samples and applies recent deep learning frameworks to enhance the performance in various tasks. This study first performs pixelwise classification on terahertz scans with CNN-based neural networks and time-frequency based feature tensors using wavelet transformation. This study then explores the neural network based semantic segmentation strategy performing on terahertz scans considering spatial information and incorporating noisy label handling with label correction techniques. Additionally, this study performs resolution restoration for visual enhancement on terahertz scans using an unsupervised, generative image-to-image translation methodology. This work also proposes a novel data processing pipeline that trains a semantic segmentation network using only neural generated synthetic terahertz scans. The performance is evaluated using various evaluation metrics among different tasks

    Cancer diagnosis using deep learning: A bibliographic review

    Get PDF
    In this paper, we first describe the basics of the field of cancer diagnosis, which includes steps of cancer diagnosis followed by the typical classification methods used by doctors, providing a historical idea of cancer classification techniques to the readers. These methods include Asymmetry, Border, Color and Diameter (ABCD) method, seven-point detection method, Menzies method, and pattern analysis. They are used regularly by doctors for cancer diagnosis, although they are not considered very efficient for obtaining better performance. Moreover, considering all types of audience, the basic evaluation criteria are also discussed. The criteria include the receiver operating characteristic curve (ROC curve), Area under the ROC curve (AUC), F1 score, accuracy, specificity, sensitivity, precision, dice-coefficient, average accuracy, and Jaccard index. Previously used methods are considered inefficient, asking for better and smarter methods for cancer diagnosis. Artificial intelligence and cancer diagnosis are gaining attention as a way to define better diagnostic tools. In particular, deep neural networks can be successfully used for intelligent image analysis. The basic framework of how this machine learning works on medical imaging is provided in this study, i.e., pre-processing, image segmentation and post-processing. The second part of this manuscript describes the different deep learning techniques, such as convolutional neural networks (CNNs), generative adversarial models (GANs), deep autoencoders (DANs), restricted Boltzmann’s machine (RBM), stacked autoencoders (SAE), convolutional autoencoders (CAE), recurrent neural networks (RNNs), long short-term memory (LTSM), multi-scale convolutional neural network (M-CNN), multi-instance learning convolutional neural network (MIL-CNN). For each technique, we provide Python codes, to allow interested readers to experiment with the cited algorithms on their own diagnostic problems. The third part of this manuscript compiles the successfully applied deep learning models for different types of cancers. Considering the length of the manuscript, we restrict ourselves to the discussion of breast cancer, lung cancer, brain cancer, and skin cancer. The purpose of this bibliographic review is to provide researchers opting to work in implementing deep learning and artificial neural networks for cancer diagnosis a knowledge from scratch of the state-of-the-art achievements

    Machine learning methods for histopathological image analysis

    Full text link
    Abundant accumulation of digital histopathological images has led to the increased demand for their analysis, such as computer-aided diagnosis using machine learning techniques. However, digital pathological images and related tasks have some issues to be considered. In this mini-review, we introduce the application of digital pathological image analysis using machine learning algorithms, address some problems specific to such analysis, and propose possible solutions.Comment: 23 pages, 4 figure

    A Survey on Deep Learning in Medical Image Analysis

    Full text link
    Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks and provide concise overviews of studies per application area. Open challenges and directions for future research are discussed.Comment: Revised survey includes expanded discussion section and reworked introductory section on common deep architectures. Added missed papers from before Feb 1st 201

    Breast Cancer Automatic Diagnosis System using Faster Regional Convolutional Neural Networks

    Get PDF
    Breast cancer is one of the most frequent causes of mortality in women. For the early detection of breast cancer, the mammography is used as the most efficient technique to identify abnormalities such as tumors. Automatic detection of tumors in mammograms has become a big challenge and can play a crucial role to assist doctors in order to achieve an accurate diagnosis. State-of-the-art Deep Learning algorithms such as Faster Regional Convolutional Neural Networks are able to determine the presence of an object and also its position inside the image in a reduced computation time. In this work, we evaluate these algorithms to detect tumors in mammogram images and propose a detection system that contains: (1) a preprocessing step performed on mammograms taken from the Digital Database for Screening Mammography (DDSM) and (2) the Neural Network model, which performs feature extraction over the mammograms in order to locate tumors within each image and classify them as malignant or benign. The results obtained show that the proposed algorithm has an accuracy of 97.375%. These results show that the system could be very useful for aiding physicians when detecting tumors from mammogram images.Ministerio de Economía y Competitividad TEC2016-77785-

    Elephant Search with Deep Learning for Microarray Data Analysis

    Full text link
    Even though there is a plethora of research in Microarray gene expression data analysis, still, it poses challenges for researchers to effectively and efficiently analyze the large yet complex expression of genes. The feature (gene) selection method is of paramount importance for understanding the differences in biological and non-biological variation between samples. In order to address this problem, a novel elephant search (ES) based optimization is proposed to select best gene expressions from the large volume of microarray data. Further, a promising machine learning method is envisioned to leverage such high dimensional and complex microarray dataset for extracting hidden patterns inside to make a meaningful prediction and most accurate classification. In particular, stochastic gradient descent based Deep learning (DL) with softmax activation function is then used on the reduced features (genes) for better classification of different samples according to their gene expression levels. The experiments are carried out on nine most popular Cancer microarray gene selection datasets, obtained from UCI machine learning repository. The empirical results obtained by the proposed elephant search based deep learning (ESDL) approach are compared with most recent published article for its suitability in future Bioinformatics research.Comment: 12 pages, 5 Tabl
    corecore