7 research outputs found

    SMART: A Situation Model for Algebra Story Problems via Attributed Grammar

    Full text link
    Solving algebra story problems remains a challenging task in artificial intelligence, which requires a detailed understanding of real-world situations and a strong mathematical reasoning capability. Previous neural solvers of math word problems directly translate problem texts into equations, lacking an explicit interpretation of the situations, and often fail to handle more sophisticated situations. To address such limits of neural solvers, we introduce the concept of a \emph{situation model}, which originates from psychology studies to represent the mental states of humans in problem-solving, and propose \emph{SMART}, which adopts attributed grammar as the representation of situation models for algebra story problems. Specifically, we first train an information extraction module to extract nodes, attributes, and relations from problem texts and then generate a parse graph based on a pre-defined attributed grammar. An iterative learning strategy is also proposed to improve the performance of SMART further. To rigorously study this task, we carefully curate a new dataset named \emph{ASP6.6k}. Experimental results on ASP6.6k show that the proposed model outperforms all previous neural solvers by a large margin while preserving much better interpretability. To test these models' generalization capability, we also design an out-of-distribution (OOD) evaluation, in which problems are more complex than those in the training set. Our model exceeds state-of-the-art models by 17\% in the OOD evaluation, demonstrating its superior generalization ability

    Solving Math Word Problems by Scoring Equations with Recursive Neural Networks

    Full text link
    Solving math word problems is a cornerstone task in assessing language understanding and reasoning capabilities in NLP systems. Recent works use automatic extraction and ranking of candidate solution equations providing the answer to math word problems. In this work, we explore novel approaches to score such candidate solution equations using tree-structured recursive neural network (Tree-RNN) configurations. The advantage of this Tree-RNN approach over using more established sequential representations, is that it can naturally capture the structure of the equations. Our proposed method consists in transforming the mathematical expression of the equation into an expression tree. Further, we encode this tree into a Tree-RNN by using different Tree-LSTM architectures. Experimental results show that our proposed method (i) improves overall performance with more than 3% accuracy points compared to previous state-of-the-art, and with over 18% points on a subset of problems that require more complex reasoning, and (ii) outperforms sequential LSTMs by 4% accuracy points on such more complex problems
    corecore