18,416 research outputs found

    Neural Lyapunov Control

    Full text link
    We propose new methods for learning control policies and neural network Lyapunov functions for nonlinear control problems, with provable guarantee of stability. The framework consists of a learner that attempts to find the control and Lyapunov functions, and a falsifier that finds counterexamples to quickly guide the learner towards solutions. The procedure terminates when no counterexample is found by the falsifier, in which case the controlled nonlinear system is provably stable. The approach significantly simplifies the process of Lyapunov control design, provides end-to-end correctness guarantee, and can obtain much larger regions of attraction than existing methods such as LQR and SOS/SDP. We show experiments on how the new methods obtain high-quality solutions for challenging control problems.Comment: NeurIPS 201

    Variable neural networks for adaptive control of nonlinear systems

    Get PDF
    This paper is concerned with the adaptive control of continuous-time nonlinear dynamical systems using neural networks. A novel neural network architecture, referred to as a variable neural network, is proposed and shown to be useful in approximating the unknown nonlinearities of dynamical systems. In the variable neural networks, the number of basis functions can be either increased or decreased with time, according to specified design strategies, so that the network will not overfit or underfit the data set. Based on the Gaussian radial basis function (GRBF) variable neural network, an adaptive control scheme is presented. The location of the centers and the determination of the widths of the GRBFs in the variable neural network are analyzed to make a compromise between orthogonality and smoothness. The weight-adaptive laws developed using the Lyapunov synthesis approach guarantee the stability of the overall control scheme, even in the presence of modeling error(s). The tracking errors converge to the required accuracy through the adaptive control algorithm derived by combining the variable neural network and Lyapunov synthesis techniques. The operation of an adaptive control scheme using the variable neural network is demonstrated using two simulated example

    Stability of Deep Neural Networks for Feedback-Optimal Pinpoint Landings

    Get PDF
    The ability to certify systems driven by neural networks is crucial for future rollouts of machine learning technologies in aerospace applications. In this study, the neural networks are used to represent a fuel-optimal feedback controller for two different 3-degree-of-freedom pinpoint landing problems. It is shown that the standard sum-ofsquares Lyapunov candidate is too restrictive to assess the stability of systems with fuel-optimal control profiles. Instead, a parametric Lyapunov candidate (i.e. a neural network) can be trained to sufficiently evaluate the closed-loop stability of fuel-optimal control profiles. Then, a stability-constrained imitation learning method is applied, which simultaneously trains a neural network policy and neural network Lyapunov function such that feedback-optimal control is achieved, and Lyapunov stability is verified. Phase-space plots of the Lyapunov derivative show the improvement in stability assessment provided by the neural network Lyapunov function, and Monte Carlo simulations demonstrate the stable, feedback-optimal control provided by the policy

    Augmented Neural Lyapunov Control

    Get PDF
    Machine learning-based methodologies have recently been adapted to solve control problems. The Neural Lyapunov Control (NLC) method is one such example. This approach combines Artificial Neural Networks (ANNs) with Satisfiability Modulo Theories (SMT) solvers to synthesise stabilising control laws and to prove their formal correctness. The ANNs are trained over a dataset of state-space samples to generate candidate control and Lyapunov functions, while the SMT solvers are tasked with certifying the correctness of the Lyapunov function over a continuous domain or by returning a counterexample. Despite the approach’s attractiveness, issues can occur due to subsequent calls of the SMT module at times returning similar counterexamples, which can turn out to be uninformative and may lead to dataset overfitting. Additionally, the control network weights are usually initialised with pre-computed gains from state-feedback controllers, e.g. Linear-Quadratic Regulators. To properly perform the initialisation requires user time and control expertise. In this work, we present an Augmented NLC method that mitigates these drawbacks, removes the need for the control initialisation and further improves counterexample generation. As a result, the proposed method allows the synthesis of nonlinear (as well as linear) control laws with the sole requirement being the knowledge of the system dynamics. The ANLC is tested over challenging benchmarks such as the Lorenz attractor and outperformed existing methods in terms of successful synthesis rate. The developed framework is released open-source at: https://github.com/grande-dev/Augmented-Neural-Lyapunov-Control

    Neural Lyapunov and Optimal Control

    Full text link
    Optimal control (OC) is an effective approach to controlling complex dynamical systems. However, traditional approaches to parameterising and learning controllers in optimal control have been ad-hoc, collecting data and fitting it to neural networks. However, this can lead to learnt controllers ignoring constraints like optimality and time variability. We introduce a unified framework that simultaneously solves control problems while learning corresponding Lyapunov or value functions. Our method formulates OC-like mathematical programs based on the Hamilton-Jacobi-Bellman (HJB) equation. We leverage the HJB optimality constraint and its relaxation to learn time-varying value and Lyapunov functions, implicitly ensuring the inclusion of constraints. We show the effectiveness of our approach on linear and nonlinear control-affine problems. Additionally, we demonstrate significant reductions in planning horizons (up to a factor of 25) when incorporating the learnt functions into Model Predictive Controllers
    • …
    corecore