6 research outputs found

    Comparative Analysis of Functionality and Aspects for Hybrid Recommender Systems

    Get PDF
    Recommender systems are gradually becoming the backbone of profitable business which interact with users mainly on the web stack. These systems are privileged to have large amounts of user interaction data used to improve them.  The systems utilize machine learning and data mining techniques to determine products and features to suggest different users correctly. This is an essential function since offering the right product at the right time might result in increased revenue. This paper gives focus on the importance of different kinds of hybrid recommenders. First, by explaining the various types of recommenders in use, then showing the need for hybrid systems and the multiple kinds before giving a comparative analysis of each of these. Keeping in mind that content-based, as well as collaborative filtering systems, are widely used, research is comparatively done with a keen interest on how this measures up to hybrid recommender systems

    Collaborative Decision-Making Using Spatiotemporal Graphs in Connected Autonomy

    Full text link
    Collaborative decision-making is an essential capability for multi-robot systems, such as connected vehicles, to collaboratively control autonomous vehicles in accident-prone scenarios. Under limited communication bandwidth, capturing comprehensive situational awareness by integrating connected agents' observation is very challenging. In this paper, we propose a novel collaborative decision-making method that efficiently and effectively integrates collaborators' representations to control the ego vehicle in accident-prone scenarios. Our approach formulates collaborative decision-making as a classification problem. We first represent sequences of raw observations as spatiotemporal graphs, which significantly reduce the package size to share among connected vehicles. Then we design a novel spatiotemporal graph neural network based on heterogeneous graph learning, which analyzes spatial and temporal connections of objects in a unified way for collaborative decision-making. We evaluate our approach using a high-fidelity simulator that considers realistic traffic, communication bandwidth, and vehicle sensing among connected autonomous vehicles. The experimental results show that our representation achieves over 100x reduction in the shared data size that meets the requirements of communication bandwidth for connected autonomous driving. In addition, our approach achieves over 30% improvements in driving safety

    On the Dimensionality and Utility of Convolutional Autoencoder’s Latent Space Trained with Topology-Preserving Spectral EEG Head-Maps

    Get PDF
    Electroencephalography (EEG) signals can be analyzed in the temporal, spatial, or frequency domains. Noise and artifacts during the data acquisition phase contaminate these signals adding difficulties in their analysis. Techniques such as Independent Component Analysis (ICA) require human intervention to remove noise and artifacts. Autoencoders have automatized artifact detection and removal by representing inputs in a lower dimensional latent space. However, little research is devoted to understanding the minimum dimension of such latent space that allows meaningful input reconstruction. Person-specific convolutional autoencoders are designed by manipulating the size of their latent space. A sliding window technique with overlapping is employed to segment varied-sized windows. Five topographic head-maps are formed in the frequency domain for each window. The latent space of autoencoders is assessed using the input reconstruction capacity and classification utility. Findings indicate that the minimal latent space dimension is 25% of the size of the topographic maps for achieving maximum reconstruction capacity and maximizing classification accuracy, which is achieved with a window length of at least 1 s and a shift of 125 ms, using the 128 Hz sampling rate. This research contributes to the body of knowledge with an architectural pipeline for eliminating redundant EEG data while preserving relevant features with deep autoencoders

    A Survey on Cross-domain Recommendation: Taxonomies, Methods, and Future Directions

    Full text link
    Traditional recommendation systems are faced with two long-standing obstacles, namely, data sparsity and cold-start problems, which promote the emergence and development of Cross-Domain Recommendation (CDR). The core idea of CDR is to leverage information collected from other domains to alleviate the two problems in one domain. Over the last decade, many efforts have been engaged for cross-domain recommendation. Recently, with the development of deep learning and neural networks, a large number of methods have emerged. However, there is a limited number of systematic surveys on CDR, especially regarding the latest proposed methods as well as the recommendation scenarios and recommendation tasks they address. In this survey paper, we first proposed a two-level taxonomy of cross-domain recommendation which classifies different recommendation scenarios and recommendation tasks. We then introduce and summarize existing cross-domain recommendation approaches under different recommendation scenarios in a structured manner. We also organize datasets commonly used. We conclude this survey by providing several potential research directions about this field

    Representation Learning for Texts and Graphs: A Unified Perspective on Efficiency, Multimodality, and Adaptability

    Get PDF
    [...] This thesis is situated between natural language processing and graph representation learning and investigates selected connections. First, we introduce matrix embeddings as an efficient text representation sensitive to word order. [...] Experiments with ten linguistic probing tasks, 11 supervised, and five unsupervised downstream tasks reveal that vector and matrix embeddings have complementary strengths and that a jointly trained hybrid model outperforms both. Second, a popular pretrained language model, BERT, is distilled into matrix embeddings. [...] The results on the GLUE benchmark show that these models are competitive with other recent contextualized language models while being more efficient in time and space. Third, we compare three model types for text classification: bag-of-words, sequence-, and graph-based models. Experiments on five datasets show that, surprisingly, a wide multilayer perceptron on top of a bag-of-words representation is competitive with recent graph-based approaches, questioning the necessity of graphs synthesized from the text. [...] Fourth, we investigate the connection between text and graph data in document-based recommender systems for citations and subject labels. Experiments on six datasets show that the title as side information improves the performance of autoencoder models. [...] We find that the meaning of item co-occurrence is crucial for the choice of input modalities and an appropriate model. Fifth, we introduce a generic framework for lifelong learning on evolving graphs in which new nodes, edges, and classes appear over time. [...] The results show that by reusing previous parameters in incremental training, it is possible to employ smaller history sizes with only a slight decrease in accuracy compared to training with complete history. Moreover, weighting the binary cross-entropy loss function is crucial to mitigate the problem of class imbalance when detecting newly emerging classes. [...
    corecore