1,633 research outputs found

    Role Playing Learning for Socially Concomitant Mobile Robot Navigation

    Full text link
    In this paper, we present the Role Playing Learning (RPL) scheme for a mobile robot to navigate socially with its human companion in populated environments. Neural networks (NN) are constructed to parameterize a stochastic policy that directly maps sensory data collected by the robot to its velocity outputs, while respecting a set of social norms. An efficient simulative learning environment is built with maps and pedestrians trajectories collected from a number of real-world crowd data sets. In each learning iteration, a robot equipped with the NN policy is created virtually in the learning environment to play itself as a companied pedestrian and navigate towards a goal in a socially concomitant manner. Thus, we call this process Role Playing Learning, which is formulated under a reinforcement learning (RL) framework. The NN policy is optimized end-to-end using Trust Region Policy Optimization (TRPO), with consideration of the imperfectness of robot's sensor measurements. Simulative and experimental results are provided to demonstrate the efficacy and superiority of our method

    Human-Centered Navigation and Person-Following with Omnidirectional Robot for Indoor Assistance and Monitoring

    Get PDF
    Robot assistants and service robots are rapidly spreading out as cutting-edge automation solutions to support people in their everyday life in workplaces, health centers, and domestic environments. Moreover, the COVID-19 pandemic drastically increased the need for service technology to help medical personnel in critical conditions in hospitals and domestic scenarios. The first requirement for an assistive robot is to navigate and follow the user in dynamic environments in complete autonomy. However, these advanced multitask behaviors require flexible mobility of the platform to accurately avoid obstacles in cluttered spaces while tracking the user. This paper presents a novel human-centered navigation system that successfully combines a real-time visual perception system with the mobility advantages provided by an omnidirectional robotic platform to precisely adjust the robot orientation and monitor a person while navigating. Our extensive experimentation conducted in a representative indoor scenario demonstrates that our solution offers efficient and safe motion planning for person-following and, more generally, for human-centered navigation tasks

    Place recognition: An Overview of Vision Perspective

    Full text link
    Place recognition is one of the most fundamental topics in computer vision and robotics communities, where the task is to accurately and efficiently recognize the location of a given query image. Despite years of wisdom accumulated in this field, place recognition still remains an open problem due to the various ways in which the appearance of real-world places may differ. This paper presents an overview of the place recognition literature. Since condition invariant and viewpoint invariant features are essential factors to long-term robust visual place recognition system, We start with traditional image description methodology developed in the past, which exploit techniques from image retrieval field. Recently, the rapid advances of related fields such as object detection and image classification have inspired a new technique to improve visual place recognition system, i.e., convolutional neural networks (CNNs). Thus we then introduce recent progress of visual place recognition system based on CNNs to automatically learn better image representations for places. Eventually, we close with discussions and future work of place recognition.Comment: Applied Sciences (2018

    Obstacle Avoidance Based on Stereo Vision Navigation System for Omni-directional Robot

    Get PDF
    This paper addresses the problem of obstacle avoidance in mobile robot navigation systems. The navigation system is considered very important because the robot must be able to be controlled from its initial position to its destination without experiencing a collision. The robot must be able to avoid obstacles and arrive at its destination. Several previous studies have focused more on predetermined stationary obstacles. This has resulted in research results being difficult to apply in real environmental conditions, whereas in real conditions, obstacles can be stationary or moving caused by changes in the walking environment. The objective of this study is to address the robot’s navigation behaviors to avoid obstacles. In dealing with complex problems as previously described, a control system is designed using Neuro-Fuzzy so that the robot can avoid obstacles when the robot moves toward the destination. This paper uses ANFIS for obstacle avoidance control. The learning model used is offline learning. Mapping the input and output data is used in the initial step. Then the data is trained to produce a very small error. To support the movement of the robot so that it is more flexible and smoother in avoiding obstacles and can identify objects in real-time, a three wheels omnidirectional robot is used equipped with a stereo vision sensor. The contribution is to advance state of the art in obstacle avoidance for robot navigation systems by exploiting ANFIS with target-and-obstacles detection based on stereo vision sensors. This study tested the proposed control method by using 15 experiments with different obstacle setup positions. These scenarios were chosen to test the ability to avoid moving obstacles that may come from the front, the right, or the left of the robot. The robot moved to the left or right of the obstacles depending on the given Vy speed. After several tests with different obstacle positions, the robot managed to avoid the obstacle when the obstacle distance ranged from 173 – 150 cm with an average speed of Vy 274 mm/s. In the process of avoiding obstacles, the robot still calculates the direction in which the robot is facing the target until the target angle is 0

    Marvin: an Innovative Omni-Directional Robotic Assistant for Domestic Environments

    Get PDF
    Population ageing and pandemics recently demonstrate to cause isolation of elderly people in their houses, generating the need for a reliable assistive figure. Robotic assistants are the new frontier of innovation for domestic welfare, and elderly monitoring is one of the services a robot can handle for collective well-being. Despite these emerging needs, in the actual landscape of robotic assistants there are no platform which successfully combines a reliable mobility in cluttered domestic spaces, with lightweight and offline Artificial Intelligence (AI) solutions for perception and interaction. In this work, we present Marvin, a novel assistive robotic platform we developed with a modular layer-based architecture, merging a flexible mechanical design with cutting-edge AI for perception and vocal control. We focus the design of Marvin on three target service functions: monitoring of elderly and reduced-mobility subjects, remote presence and connectivity, and night assistance. Compared to previous works, we propose a tiny omnidirectional platform, which enables agile mobility and effective obstacle avoidance. Moreover, we design a controllable positioning device, which easily allows the user to access the interface for connectivity and extends the visual range of the camera sensor. Nonetheless, we delicately consider the privacy issues arising from private data collection on cloud services, a critical aspect of commercial AI-based assistants. To this end, we demonstrate how lightweight deep learning solutions for visual perception and vocal command can be adopted, completely running offline on the embedded hardware of the robot.Comment: 20 pages, 9 figures, 3 tabl
    corecore