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Abstract: Robot assistants and service robots are rapidly spreading out as cutting-edge automation
solutions to support people in their everyday life in workplaces, health centers, and domestic envi-
ronments. Moreover, the COVID-19 pandemic drastically increased the need for service technology
to help medical personnel in critical conditions in hospitals and domestic scenarios. The first require-
ment for an assistive robot is to navigate and follow the user in dynamic environments in complete
autonomy. However, these advanced multitask behaviors require flexible mobility of the platform to
accurately avoid obstacles in cluttered spaces while tracking the user. This paper presents a novel
human-centered navigation system that successfully combines a real-time visual perception system
with the mobility advantages provided by an omnidirectional robotic platform to precisely adjust the
robot orientation and monitor a person while navigating. Our extensive experimentation conducted
in a representative indoor scenario demonstrates that our solution offers efficient and safe motion
planning for person-following and, more generally, for human-centered navigation tasks.

Keywords: autonomous mobile robots; indoor service robotics; person-following; human-centered
navigation; omnidirectional robot navigation

1. Introduction

Robot assistants have recently emerged as a promising solution for elderly care and
monitoring in the indoor domestic environment. The increasing demand for service robotic
platforms for indoor assistance has paved the way for the development of diverse robotic
solutions, especially devoted to elderly care [1,2]. According to the World Population
Prospects (2019) provided by the United Nations [3], life expectancy reached 72.6 years,
with a future expectation of 77.1 in 2050. Furthermore, projections reveal that there will be
more people aged 65 years or over than young aged 15 to 24 years by 2050 [3]. Population
ageing dramatically impacts our society’s organization, exacerbating delicate issues, such
as the isolation of numerous vulnerable subjects and elderly people in their homes for
most of the day. Moreover, the recent emergency related to the COVID-19 outbreak has
further increased the need for a reliable and automatic assistance tool in both hospitals
and patients’ residential environments. In this scenario, robots were demonstrated to be
a key technological ally in fighting the pandemic and its dramatic social effects, such as
isolation [4,5]. Indeed, they can offer support to both medical staff and families whenever
the services of dedicated assistive operators or volunteers are not available due to the
intensive demand generated by the pandemic.

Robotic solutions are often focused on the interactive social aspects with the user [6,7],
or, conversely, they try to continuously check the health status of the patient [8,9]. However,
a reliable and effective navigation algorithmic stack is a necessary condition to realistically
deploy a robotic platform in a cluttered environment for humans. The most recent advances
in human-aware robot navigation [10] show how planning and control algorithms can be
successfully adapted to social circumstances.
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For the specific case of a robotic assistant that aims at constantly monitoring, accompa-
nying, and supporting the user within the domestic or medical environment, the ability to
follow the person is crucial. Indeed, person-following [11,12] is the primary challenging
task to enable any visual or vocal interaction with the robot, while the user is moving
around. On the other hand, reduced mobility subjects may also need the robot to accom-
plish desired services in the room, moving around towards different destinations. Keeping
an eye on the users during the execution of such secondary functions constitutes a huge
benefit for the robot assistant’s main goal: monitoring the person’s condition. Person-
following and goal-based navigation probably represent an indoor robot assistant’s two
most common navigation behaviors. However, monitoring while navigating might raise
some serious difficulties in the case of conventional differential drive platforms, which
do not have the possibility to describe a curved motion without a change in orientation.
This limitation often leads differential drive robots to lose the human target while avoiding
obstacles or following an occluded path. The same argument does not apply to an omnidi-
rectional platform: in this case, the robot can handle its motion along all horizontal plane
directions without changing its orientation.

In this work, we focus our research on the development of a human-centered au-
tonomous navigation system for a robotic assistant, which aims at fulfilling the user
assistance requirement in both the described scenarios: goal-based navigation (Figure 1)
and person-following (Figure 2). Hence, we decided to adopt a tiny-size omnidirectional
robotic base platform, to fully exploit its kinematic advantages and propose an optimized
person-following methodology, always guaranteeing collision-free trajectory planning com-
bined with continuous visual tracking of the user. Nonetheless, our solution also enables
the robot assistant to move toward the desired destination while adjusting the orientation of
the platform to keep active visual contact with the user. This results in increased reliability
of the robotic assistant, which is able to perform different tasks while continuously checking
the status of the person and calling for help in case dangerous situations are detected.

Figure 1. Visualization of the human-centered navigation service task for domestic robot assistance:
the rover has to reach different goals while keep monitoring the user.
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(a) (b)

Figure 2. Visualization of human-centered person-following task for domestic assistance: the omnidi-
rectional capability allows the rover to follow the user maintaining its orientation towards them while
avoiding obstacles. (a) The robot can follow the same path of the person while avoiding obstacles.
(b) The robot must follow a different path keeping active the monitoring of the person.

We first set up a real-time perception pipeline to identify and track the person’s pose
(xP, yP). This position is exploited in the case of person-following, where it constitutes
the dynamic goal of navigation. Differently, in the case of a goal-based navigation task,
the goal is represented by the desired coordinates (xG, yG). A local planner generates
a collision-free trajectory, handling the linear velocity commands vx and vy, while an
additional module tunes the control of the angular yaw velocity ω, in order to constantly
maintain the orientation towards the person (Figure 1).

The contribution of this work is threefold:

• We identify an omnidirectional motion planning approach as a robust, effective solu-
tion to boost the mobility of a robotic assistant during its principal navigation activities
(person-following and goal-based navigation);

• We set up a real-time, cost-effective perception pipeline to extract the coordinate of
the person and visually track its pose;

• We effectively integrate a navigation algorithmic stack that separately handles trajec-
tory generation for obstacle avoidance and orientation control for person monitoring.

Nonetheless , compared to most previous works, we carried out extensive experimen-
tation for both person-following and static goal navigation with the robot. To this end, we
set up an innovative experimental framework based on an ultra-wideband (UWB) anchors
system to localize both the person and the robot while moving and measure their relative
distance and orientation. Our results validate the performance of our solution and show
the competitive advantage and robustness it can provide in visually monitoring the user
while avoiding obstacles in a cluttered indoor environment, such as a domestic one.

The article is organized as follows. In Section 2, we discuss related works presented in
literature. In Section 3, we first introduce the human-centered navigation tasks, then we
discuss the core methods of our solution, describing the perception and the omnidirectional
navigation algorithms. In Section 4, the experimental settings and validation scenarios for
both person-following and goal-based navigation are thoroughly presented, discussing
the relevance of the obtained results. Section 5 conclude the article and propose possible
future works.

2. Related Works

Similar works have been proposed in literature exclusively treating the person-following
task. Ref. [11] propose a thorough categorization of recent person-following systems based
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on five major features: the medium of operation, the choice of sensors, the mode of interac-
tion, the granularity, and the degree of autonomy. However, very few of them propose a
complete framework for person-following, devoting a great focus to both person identi-
fication and tracking, and effective navigation planning for obstacle avoidance. A more
detailed overview of the most related following navigation works in literature is proposed
in Section 2.2.

The omnidirectional service platform adopted for this study has been recently pre-
sented in [13], where details related to the design and the capabilities of the platform can
be found. Nonetheless, the human-centered navigation stack proposed in this work can be
fully replicated and applied with a generic omnidirectional platform.

2.1. Person Identification and Tracking

Most studies concentrated only on the person identification and tracking problem
with different sensor strategies. Identification systems often aim at recognizing a person
from legs patterns in the collection range of a LiDAR laser scan [14–16], or Time-Of-Flight
(TOF) 3D points clouds [17,18]. However, in the last decade, computer-vision systems
have been the preferred solution, demonstrating to be the most efficient, reliable, and cost-
effective. Deep Neural Networks (DNN) have largely demonstrated to be a meaningful
answer to a wide variety of visual perception tasks, such as real-time object and person
detection [19], semantic segmentation [20], or pose estimation [21]. Some works proposed
a quite complex visual tracking system, which has been more recently replaced by simpler
tracking algorithms based on the Kalman filter [22]. The perception system used by the
recent work [23] combined OpenPose and Kalman filter to identify and track the person
using a monocamera. Moreover, [23–25] aim at recognizing or re-identifying a specific
person. Alternative approaches use sensor fusion, for example, to mix images with ultra-
sonar data for 3D person tracking [26], while [27] exploits the gait to recognize the user.
Another solution implemented to keep track of the user during navigation consists in
the adoption of an omnidirectional camera for a 360◦ Field-Of-View (FOV), [28] or also
a rotating camera, such as gimbal systems, typical of Unmanned Aerial Vehicles (UAVs)
following [29].

2.2. Navigation and Obstacle Avoidance

Person-following systems are often based on naive visual-control strategy, directly cou-
pling the generation of heuristic commands for the robot with the person coordinate in the
image [30,31]. A simple PID (proportional–integral–derivative) controller is alternatively
used by [32] with the assumption that replicating the estimated trajectory of the target
person can lead the robot to no collisions. However, this simple idea is not reliable when
the robot must deal with challenging environments like domestic ones. Narrow passages
and obstacles of diverse shapes can occlude the sensor’s field of view (FOV) and forbid the
identification of the person or, diversely, the robot may have to choose between losing the
tracking of the target and avoiding a collision. [33] proposes an obstacle avoidance system
devoted to person-following with a dynamic window approach, although using only 2D
LiDAR points for both person detection and navigation could easily lead to target loss due
to obstacles occlusion. Thus, obstacle avoidance and person tracking are often conflicting
objectives and are not usually jointly tackled in literature. Indeed, the integration of a suit-
able trajectory planner with person tracking is often neglected. To this end, omnidirectional
platforms can provide significant advantages. To our knowledge, few attempts have been
carried out to use omnidirectional motion planning for person-following, poorly presenting
and correlating methodology and experiments [34,35].

3. Human-Centered Autonomous Navigation

We define human-centered navigation as the service robotic task of autonomously
navigating within a domestic environment while maintaining constant track of the subject
of interest. On this basis, we propose a novel system to handle human-centered autonomous
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navigation in cluttered and unstructured environments, using an omnidirectional robotic
platform (Figure 3). We define two different use cases: in the first, the rover has to move
towards a series of specific destinations, keeping visual contact with the user during the
whole operation. In the second, the rover performs a person-following task where the
position of the subject, extracted from the perception system, is used as a dynamic goal for
navigation. According to this concept, the autonomous platform should always be aware
of the subject’s position during its navigation, which means keeping its orientation towards
the person and maintaining them in the camera’s field of view.

Figure 3. The omnidirectional platform we set up for experimentation and validation of our
novel methodology. The vertical shaft allows the camera to be elevated over most indoor envi-
ronment obstacles.

3.1. Perception and Tracking

In this work, we developed a deep learning perception pipeline that allows the robot
to visually track the person. The scheme presented in Figure 4 describes the complete
perception pipeline used to extract, at each time instant, the coordinate of the person in the
robot reference frame from RGB-D images. A RealSense D435i Depth Camera, mounted
on the rover at a human height, is used to collect color images of the environment. In
a first step, the person’s presence is detected through PoseNet [36], a lightweight deep
neural network that estimates the pose of humans in images and videos. For each person
present in the scene, the network outputs the position of 17 key joints (such as elbows,
shoulders, or feet). In our implementation, PoseNet runs on the Google Coral Edge TPU
device https://coral.ai (accessed on 11 July 2020) at 30 frame-per-second (FPS), which
corresponds to the maximum frame rate supported by the RealSense D435i camera. The
key-points predicted by PoseNet are then translated into a bounding box that localizes the
person within the image. The resulting bounding box is tracked with SORT [37], a very
simple online and real-time tracking algorithm based on the Kalman filter. SORT also keeps
track of the subject when they leave the frame for a few moments, and associates an ID to
each person in the image. This ID is maintained as long as the person does not leave the
frame for several time instants.

https://coral.ai
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Bounding Box 
Tracking with SORTPoseNet Detection

Depth Image

Compute Center Point 
 (Image Frame) Align Depth Person Centre

(Robot Frame)

Figure 4. Real-time visual perception pipeline for person identification, tracking, and coordinate
extraction. [xC, yC] are the coordinate of the person’s center in the image frame, while [xp, yp] indicates
it in the robot reference frame. The person’s pose is continuously estimated by PoseNet at 30 fps and
tracked with SORT, then a set of reliable pose key-points are used to extract the center coordinates.

At this point, a depth image extracted from the RealSense camera, aligned with the
RGB image, can be used to extrapolate the relative position of the detected individual in
the robot reference frame (xp, yp). To do so, it is necessary to identify a precise area, or
better, a specific point of the image where we can confidently expect to find the person. For
this purpose, the output key-joints of PoseNet represent particularly suitable information:
in comparison, a conventional person detection approach can only localize the person in an
approximate bounding box area. This information is inadequate for the person position
tracking task, since the bounding box contains points associated with the person and points
belonging to the background. The risk is that the system could treat a point of the image
belonging to the background as a point belonging to the human body, causing an error
in the correct evaluation of the subject position. A set of particularly reliable key points
of the estimated pose is selected to find the person’s center point C on the color image.
When the neural network identifies both the shoulders of a person with high confidence,
the point C is selected as the average of these joints. If shoulders are not recognized, but
the hips are, then the selected point becomes the one between the two hips. If neither
shoulders nor hips are recognized with a certain degree of confidence, then the detection of
the person is considered invalid. This structure guarantees reliable esteem of the person’s
position in the environment to be fully usable by the robot navigation system, avoiding
the risk of misleading target estimates and, consequently, inaccurate motion planning. The
distance of the person from the robot dC is then extracted from the depth frame as the value
corresponding to the point C. At each time instant, the complete information contained
in the resulting array (xC, yC, dC) is translated into the person’s position in the robot’s
reference frame (xP, yP), with basic reference frame transformations. This position will be
used by the navigation control stack described in the following section.

As an interesting point of discussion, we found that the detection of people present in
the image could not be sufficient to efficiently track a specific human subject. In particular,
two well-known problems could arise:

• Especially in crowded environments, where multiple people are present in every
frame, the subject could be mistaken for another person in the image (or vice-versa);

• Without a component capable of tracking observations at previous time instants, it
could be very difficult to guarantee real-time performances if the detection of the
subject is lost for a few consecutive frames. This problem can be particularly critical
in all those situations with an occluded view of the subject due to obstacles or other
people present in the scene.

Although a person re-identification algorithm could mitigate the first problem allow-
ing to recognize a specific person, at the cost of additional computation, dealing with the
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second can be much more arduous without a proper component specifically designed for
tracking. Aiming to solve both the problems at the most convenient computational cost, we
decided to adopt SORT in the person detection pipeline to exploit also future estimates of
the person pose and allow the rover to keep tracking the desired subject as long as necessary,
discriminating from other people in the scene. Nonetheless, a Re-Identification neural
network could be easily integrated as the first stage of our pipeline if strictly requested by
the particular case study.

3.2. Omnidirectional Motion Planner and Obstacle Avoidance

Typically, a navigation system requires some fundamental components. The first
necessity is to localize the robot in the operating environment. In order to compute the
trajectory towards a goal, the system needs to acquire the pose (position and orientation)
of the rover with respect to a fixed reference frame. This piece of information needs to
be retrieved with a certain frequency to ensure real-time performances, since we need to
maintain track of the position of the rover during time as it moves towards a different
location. Obviously, the required frequency of localization acquisition increases as the
speeds assumed by the platform grow. In our implementation, we exploited a RealSense
T265 Tracking Camera to obtain information about the rover’s pose. This camera employs
state-of-the-art Visual Inertial Odometry (VIO) algorithms, which use visual information
to provide odometry data at a frequency of roughly 200 fps, more than sufficient for any
indoor autonomous platform.

Second, we need a path planner. If a map of the operative scenario is provided from
the beginning, it is possible to compute an optimal trajectory knowing a priori the location
of each obstacle (global planner). However, in the majority of service robotics navigation
cases, a global planner is not sufficient, since a map is not always available. Moreover, if
the map is also given, real-life domestic environments are highly dynamic environments,
where obstacles’ position could be changed over time (chairs, bins) or they can move
on their own (people, animals, other autonomous platforms). In these cases, a real-time
perception system together with a local planner is necessary to dynamically re-plan the
upcoming commands on the base of the last perceived data, and perform an effective
obstacle avoidance. The visual perception pipeline described in Section 3.1 is uniquely
used to extract the coordinates of the person (xP, yP) in the scene. Differently, we use an
RPLiDAR A1 to retrieve 2D laser scan distance measurements of the obstacles around the
robot at each time instant, which are subsequently used to feed a local path planner.

Information regarding the rover’s and obstacles’ position is passed to the navigation
system, which we developed tailoring the Navigation2 navigation stack
(https://navigation.ros.org/ (accessed on 13 July 2022)) for the specific use case of as-
sistance and person monitoring. Nav2 is a highly modular navigation system based on
behavior trees, which allows integration with custom plugins adapted for any specific
application. It provides default modules for converting laser scan data into cost-map
representation, planning a path towards a goal, and controlling the rover along it. Al-
though Nav2 is a very complete system for a conventional navigation application, we
needed to modify it extensively to customize the overall algorithmic stack to handle both
person-following and goal-based navigation with a unique solution for person-monitoring,
integrating new plugins and behavior tree entries.

Since domestic scenarios fall within unstructured environments, for which a map is
rarely provided, we decided to focus on a local planner. This option allows the rover to
be deployed in unknown scenarios without the need for preliminary information, since
the system plans its navigation paths depending only on real-time spatial data deriving
from the LiDAR sensor. The resulting navigation system consists of a DWB local planner
and controller, able to generate an obstacle-free trajectory towards the goal and drive
the rover along it. To detach the control of linear and angular velocities, we decided to
forbid the DWB to include the yaw velocity in the dynamic path planning, forcing it,
instead, to plan a safe trajectory and control the rover using only the two linear velocities

https://navigation.ros.org/


Robotics 2022, 11, 108 8 of 17

[vx, vy], along x and y axes of the horizontal plane. The goal of the navigation task (xG, yG)
coincides with the person’s position (xP, yP) in the specific case of the person-following,
diversely it is a separate target point to be reached while monitoring the person in the
service navigation scenario.

3.3. Person-Focused Orientation Control

The angular velocity ω is provided by another system node, which at any instant
computes the angular difference ∆θ between the orientation of the rover and the orientation
of the vector connecting the rover’s center of rotation with the person position, retrieved
from the perception module:

∆θ = arctan(yP, xP)

The exact yaw velocity is then calculated as follow:

ω = sign(∆θ) · min(‖k · ∆θ‖, ωmax)

where

k is a parameter used to linearly increase ω as ∆θ grows

ωmax is another parameter used to limit the maximum value assumed by ω

After some tests on our indoor application, we found optimal values of these parame-
ters, respectively, at 1.3 and 1.5 rad/s, but they can be changed depending on the specific
operating scenario.

Figure 5 resumes the complete proposed human-centered navigation system. The
upper blue section of the scheme contains the extraction of the person position (xP, yP) in
the robot reference frame through the visual perception pipeline (presented in Section 3.1).
The yaw controller then processes this position to obtain the angular velocity command ω

needed to keep the platform oriented towards the person. On the lower red section of the
scheme, the DWB local planner receives the LiDAR range points and the goal coordinate
(xG, yG) to produce a collision-free trajectory and provide linear velocities [vx, vy]. The full
velocity command for the robot is, therefore, obtained by combining linear and angular
velocities in the vector [vx, vy, ω]. Obviously, the view of the subject can be occluded by
physical obstacles, but if the RGB camera is mounted on the robot at a height greater than
most objects in the operating environment (such as tables, chairs, sofas, desks), as we did
on our platform, the rover can navigate through cluttered spaces still maintaining its sight
centered on the user.

This intuition was initially conceived for an autonomous indoor assistant, addressed
to elderly or disabled users who need constant monitoring, even when the platform needs
to move to another place of the room to carry out a different task, but can be adapted to
many different applications, for example, in all the situations in which the platform has
to perform a specific operation while constantly focusing on another human operator, for
monitoring purposes or to receive new instruction through visual inputs. This application
can be particularly useful in the fight against COVID-19 and future pandemics for assisting
patients in hospitals and their houses. The rover can replace medical personnel’s interven-
tion, greatly reducing the risk of contagion and spread of the virus, continue to monitor the
patient, and eventually request human help in case of abnormal situations.



Robotics 2022, 11, 108 9 of 17

Angular Velocity Robot Command

Yaw
Controller

Linear Velocities

DWB Local
Planner

Planning

LiDAR points

Goal

Depth

RGB

Person Centre
(Robot Frame)

Perception

Position 
Controller

Figure 5. Human-centered navigation methodology pipeline scheme. Linear and angular veloc-
ity [vx, vy, ω] are generated separately to successfully carry out obstacle avoidance through local
trajectory planning together with person monitoring through yaw control.

4. Experiments and Results

For our experimentation, we used a cheap omnidirectional robotic platform with
four mecanum wheels, presented in [13]. The whole software system is executed on a
single Intel NUC11TNHv5 PC, directly integrated within the rover. As stated before, the
platform mounts an RPLiDAR A1 sensor, a RealSense D435i camera for person detection,
and a RealSense T265 camera for visual odometry. Overall, the platform presents a very
basic configuration, easily replicable with simple commercial components on a generic
omnidirectional platform. In this sense, our solution is cost-effective, avoiding the necessity
of more complex and expensive sensors and systems for person tracking, such as active
gimbals or 360-degree cameras. Furthermore, the software system is lightweight enough to
run on integrated hardware at the edge and reach real-time performances.

All the software components and technologies needed to perceive and navigate the
environment have to be merged into a single organic system, in order to fulfill the different
tasks. The most widespread solution in literature requires using a Middleware [38], an
abstraction layer that resides between the operating system and software applications.
In this work, we decided to adopt the Robot Operating System 2 (ROS2) https://docs.
ros.org/en/foxy/index.html (accessed on 18 July 2022), due to the variety of compatible
algorithms and the very active community supporting it. It provides several advantages
and improvements compared to the original ROS https://www.ros.org/ (accessed on 28
July 2022) since it is more suitable for real-time systems and it has access to more advanced
applications [39]. ROS2 is based on a Data Distribution Service (DDS) structure, with nodes
that publish and subscribe to different topics.

Two different kinds of experiments are conducted:

1. The first experimental stage aims at demonstrating the efficiency of the person-
centered navigation task for monitoring purposes, where the rover has to navigate
from a point A to a target point B of coordinate (xG, yG), maintaining its focus on the
subject located in (xP, yP);

2. The second series of experiments take into consideration the person-following task,
where (xG, yG) and (xP, yP) coincide and represent the dynamic goal obtained from
the visual perception pipeline, which identifies and tracks the person of interest.

For these tests, the system has been integrated with additional functionalities to refine
the platform’s behavior and further increase the person’s awareness during the navigation.

https://docs.ros.org/en/foxy/index.html
https://docs.ros.org/en/foxy/index.html
https://www.ros.org/
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Safety distance module During the rover operation, the user’s safety should always be
ensured, even if this leads to the failure of the requested task. For this reason, a module
able to truncate the navigation path of the rover is inserted, which guarantees a minimum
distance of one meter always to be maintained from any person.

Recovery policy for person tracking During the navigation towards a specified goal, the
rover may lose track of the person. In case the track is not resumed within a certain
time interval, a specific module we added sends a command to the rover to interrupt the
navigation and to start rotating towards the direction the person was last perceived in an
attempt to regain visual contact with the user.

Recovery policy for person-following The same problem described above can occur dur-
ing the person-following task but, in this case, consequences could be even worse since the
knowledge of the person’s position affects not only the yaw but also the linear directions of
the navigation. To re-establish track with the person, first of all the rover heads towards
the last known position of the user, maintaining its orientation towards that location. This
decision compensate for all those cases in which the person takes a turn behind an obstacle,
such as a wall, and simply moving towards the corner of the curve where the user was last
seen is enough to regain visual contact. If this should reveal not sufficient, once the robot
has reached the last known position, it starts rotating as described before.

For each tested scenario, tests are performed with the same omnidirectional rover in
two different configurations. In the first configuration, the rover adopts our novel navi-
gation methodology: it plans collision-free trajectories fully exploiting its omnidirectional
kinematics, combining both the two linear velocities [vx, vy]. The angular yaw velocity ω

is controlled by the person tracking module to always maintain visual contact with the
followed person. In the second configuration, the rover behaves like a differential platform.
This means it can only exploit velocity vx, while control of velocity vy is denied, and the
angular yaw velocity ω is solely dedicated to navigation purposes. This procedure allows
the comparison of performances between our solution and a generic differential platform
in tracking the user.

4.1. Person-Centered Navigation

Tests are performed in two different scenarios, depicting a 90◦ hallway characterized
by low walls, which represent any potential obstacle present in a realistic domestic scene.
The rover camera can see over walls, but the platform is forced to avoid them in order to
reach its goal. The starting point and the destination (xG, yG) are the same in the two cases.
What changes is the position of the person (xP, yP): near the destination point in the first
scenario (Figure 6a), and in the corner of the hallway in the second (Figure 6b). In these
preliminary trials, the person maintains their position during the whole extent of the test.
The rover odometry data are acquired with a frequency of 5 Hz.

Seven tests are performed for each scenario and both configurations, omnidirectional
and differential. The error term is represented by the angular difference ∆θ between the
orientation of the rover and the orientation of the vector connecting the rover’s center
of rotation with the person’s position. The horizontal FOV of the RealSense D435i (RGB
stream) is equal to 69◦. The angular difference ∆θ should never be higher than half this
angle, approximately 34.5◦, to constantly keep track of the person’s position.

Considered metrics for each test are the average angular difference ∆θ with its stan-
dard deviation, the root mean square error (RMSE), and the mean absolute error (MAE)
maintained along the whole path, considering ∆θ = 0 as the optimal value. In Table 1
are reported, for each scenario and each metric, the average value computed over all the
different tests, and the percentage of improvement introduced by our methodology.
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(a) (b)

Figure 6. Omnidirectional person-centered navigation results in two scenarios with the person in
different positions: in (a) the person is close to the navigation goal, in (b) the person is at the corner of
the hallway. Red arrows indicate position and orientation of the rover at different time instants, the
blue point is the person’s position, while the orange spline represents the path crossed by the rover.

Table 1. Results obtained from the person-centered navigation test are expressed in terms of mean
angular difference ∆θ, its standard deviation, root mean square error (RMSE), and mean absolute
error (MAE) considering ∆θ = 0 as the optimal value. The person is located close to the destination
point in the first scenario (Figure 6a) and in the corner of the hallway in the second (Figure 6b).
Contrary to the differential configuration, omnidirectional motion drastically reduce the maximum
error ∆θ between the orientation of the rover and the person during the navigation.

∆θ Error Mean Std.Dev. RMSE MAE

First Scenario
Omnidir. −2.88 4.63 5.47 4.32
Differential −32.75 28.71 43.55 33.94
Improvement 91.21% 83.87% 87.44% 87.27%

Second
Scenario
Omnidir. −2.23 3.98 4.58 2.51
Differential −75.08 79.88 109.62 75.08
Improvement 97.03% 95.02% 95.82% 96.66%

As seen from the results and Figure 6, the omnidirectional system is able to efficiently
navigate towards the goal, constantly maintaining its orientation towards the person.
The ∆θ angular error is kept at extremely low average values equal to −2.88 and −2.23,
respectively, in the two scenarios. Furthermore, the maximum recorded value of ∆θ does
not exceed 17◦, which is well below the limit of 34◦ imposed by the camera’s FOV. This
means the system can keep tracking the person for the whole extent of the navigation.
Moreover, from data collected during the experimentation, the perception and tracking
system described at Section 3.1 was able to correctly recognize and localize the followed
person within the environment on average 29 times per second. On the other hand, velocity
commands are provided with frequencies over 15 fps at any time.

For comparison, we also added the results obtained with the differential drive configu-
ration. However, this comparison is uneven: as explained before, a differential platform has
to choose whether to navigate towards the goal or remain orientated towards the person.
This is particularly evident in the second scenario, where the person and the goal have two
completely different positions.
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4.2. Person Following

For the person-following task, tests are performed in four different scenarios. The
geometric configuration can be seen in Figure 7. Similar to the previous test stage, obsta-
cles are constituted by low walls, except for the fourth, where they are full-height walls.
Contrary to the previous case, the person to be followed moves for the whole extent of
the test. The rover has to follow the person, using the position (xP, yP) extracted from the
visual perception pipeline as a dynamic goal of the navigation. For this reason, to ensure
an accurate ground truth data collection, we set up a localization system based on four
ultra-wideband anchors placed in the testing area. One additional anchor is placed upon
the rover, and the followed person holds a second one. The rover’s orientation is also
aligned with the one used by the ultra-wideband system. In such a way, it is possible to
know the actual relative position between rover and followed person. This allows us to
correctly compute the angular difference ∆θ at any time instant. To our knowledge, this
experimental setting is the first attempt in the literature to quantitatively measure a person’s
quality following system performance, going beyond the typical qualitative evaluation.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7. Qualitative visualization of the four scenarios set up for the person-following test. In the
upper row, a schematic representation is shown, where red objects represent low-height obstacles
over which the robot’s camera can see. In the lower row, the real testing area with the robot is shown.

As already completed for the first test, seven validation runs are performed for each
rover configuration in every scenario. The same error term ∆θ and metrics discussed in
the previous section are used to evaluate the person-following performances. Results
can be consulted in Table 2. Furthermore, in Figures 8 and 9, for each scenario and each
configuration, a visualization of the performed test is reported. The gridmaps reported in
the figure are directly obtained from the rover during the navigation, while rover and person
poses are obtained from the ultra-wideband system. As can be seen, our methodology
proves to robustly track the followed person more effectively than a traditional differential
drive navigation in all the considered scenarios. In the omnidirectional configuration
(Figures 8a,c and 9a,c), the rover manages to always maintain the user within the camera’s
view, contrary to the differential drive case, where the visual contact is instead lost several
times. This generally leads to higher performance in following the user, with the rover
planning more optimal collision-free trajectories, fully satisfying also the person monitoring
requirement. The obtained values of ∆θ clearly show the performance gap in all scenarios,
demonstrating the successful behavior in monitoring the person provided by our solution.
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Additionally, in the fourth scenario (Figure 9c,d), where after the curve the wall obstructs
the rover’s view of the user, it appears clear that the ability to remain facing the human
dynamic goal allows for a more accurate re-acquisition of tracking as soon as the obstacle
is passed. In this last scenario, the differential drive system registers the highest orientation
error, with a substantial ∆θ average gap from our solution.

(a) (b)

(c) (d)

Figure 8. Person-following results in the first two scenarios: scenario 1 is composed of a wide
U-shaped path, while scenario 2 presents narrow passages through obstacles. Red arrows indicate
position and orientation of the rover associated with the person’s position (blue point) at the same
instant. The orange spline represents the path crossed by the rover. (a) Scenario 1—Omnidirectional
configuration; (b) Scenario 1—Differential configuration; (c) Scenario 2—Omnidirectional configura-
tion; (d) Scenario 2—Differential configuration.
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(a) (b)

(c) (d)

Figure 9. Person-following results in the third and fourth scenario: scenario 3 presents a high
number of obstacles and possible paths, while scenario 4 is composed of a high 90◦ wall to be
circumnavigated. Red arrows indicate position and orientation of the rover associated with the
person’s position (blue point) at the same instant. The orange spline represents the path crossed by
the rover. (a) Scenario 3—Omnidirectional configuration; (b) Scenario 3—Differential configuration;
(c) Scenario 4—Omnidirectional configuration; (d) Scenario 4—Differential configuration.
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Table 2. Results obtained from the person-following test in four different scenarios are expressed in
terms of mean angular difference ∆θ, its standard deviation, root mean square error (RMSE), and
mean absolute error (MAE) considering ∆θ = 0 as the optimal value. Our omnidirectional planning
and control system clearly demonstrates a performance gap in keeping the tracking of the person
while following its motion: the ∆θ error is drastically reduced in comparison with a differential
drive navigation.

∆θ Error Mean Std.Dev. RMSE MAE

Scenario A

Omnidir. 2.99 10.54 11.00 8.98

Differential 16.00 63.41 68.31 57.20

Improvement 81.31% 83.38% 83.90% 84.30%

Scenario B

Omnidir. −4.09 8.75 9.93 8.19

Differential −15.67 53.99 58.48 50.11

Improvement 73.90% 83.79% 83.02% 83.66%

Scenario C

Omnidir. 0.31 8.28 8.81 6.93

Differential 12.34 42.19 45.05 37.38

Improvement 97.49% 80.37% 80.44% 81.46%

Scenario D

Omnidir. 4.46 11.84 12.84 10.10

Differential 27.66 20.95 35.07 29.19

Improvement 83.88% 43.48% 63.39% 65.40%

5. Conclusions and Future Works

In this work, we propose a novel, cost-effective approach for human-centered au-
tonomous navigation in the context of domestic robotic assistance. In particular, we devote
a great focus on developing a robust solution to visually monitor the user in two different
case studies, which we consider the most relevant and common for a robot assistant: person
monitoring during navigation to a target goal and person-following. Differently from
previous works, the core of our robot assistive solution relies on the idea that keeping the
platform oriented towards the subject permits us to continuously check their status, also
when the robot is moving and avoiding obstacles typically present in a realistic indoor
environment. To this end, we first set up a real-time visual perception pipeline that reliably
provides the coordinate of the person in the robot reference frame using a cheap RGB-D
camera. Then, adopting a generic omnidirectional platform, we propose a navigation
system that separately treats orientation control and dynamic trajectory planning to fulfill
both the monitoring and the obstacle avoidance objectives of the robotic assistive task. Our
extensive experimentation conducted for both the considered use cases in realistic settings
demonstrates the competitive advantages and the robustness of our solution compared to a
common differential drive navigation. Moreover, it also advances the typical experimental
framework for person-following, quantitatively evaluating the physical tracking of the
person with an ultra-wideband localization system. To our knowledge, this is the first
study to investigate omnidirectional capability of a robotic platform to enable true human-
centered navigation, where the care and attention for the user’s health are considered
the main focus of the navigation task. Future works may investigate the integration of a
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person re-identification deep neural network in the visual perception pipeline to recognize
a specific user, which will contribute significantly to a real application.
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