695 research outputs found

    Neural Approximate Dynamic Programming for On-Demand Ride-Pooling

    Full text link
    On-demand ride-pooling (e.g., UberPool) has recently become popular because of its ability to lower costs for passengers while simultaneously increasing revenue for drivers and aggregation companies. Unlike in Taxi on Demand (ToD) services -- where a vehicle is only assigned one passenger at a time -- in on-demand ride-pooling, each (possibly partially filled) vehicle can be assigned a group of passenger requests with multiple different origin and destination pairs. To ensure near real-time response, existing solutions to the real-time ride-pooling problem are myopic in that they optimise the objective (e.g., maximise the number of passengers served) for the current time step without considering its effect on future assignments. This is because even a myopic assignment in ride-pooling involves considering what combinations of passenger requests that can be assigned to vehicles, which adds a layer of combinatorial complexity to the ToD problem. A popular approach that addresses the limitations of myopic assignments in ToD problems is Approximate Dynamic Programming (ADP). Existing ADP methods for ToD can only handle Linear Program (LP) based assignments, however, while the assignment problem in ride-pooling requires an Integer Linear Program (ILP) with bad LP relaxations. To this end, our key technical contribution is in providing a general ADP method that can learn from ILP-based assignments. Additionally, we handle the extra combinatorial complexity from combinations of passenger requests by using a Neural Network based approximate value function and show a connection to Deep Reinforcement Learning that allows us to learn this value-function with increased stability and sample-efficiency. We show that our approach outperforms past approaches on a real-world dataset by up to 16%, a significant improvement in city-scale transportation problems.Comment: Accepted for publication to the Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20

    How machine learning informs ride-hailing services: A survey

    Get PDF
    In recent years, online ride-hailing services have emerged as an important component of urban transportation system, which not only provide significant ease for residents’ travel activities, but also shape new travel behavior and diversify urban mobility patterns. This study provides a thorough review of machine-learning-based methodologies for on-demand ride-hailing services. The importance of on-demand ride-hailing services in the spatio-temporal dynamics of urban traffic is first highlighted, with machine-learning-based macro-level ride-hailing research demonstrating its value in guiding the design, planning, operation, and control of urban intelligent transportation systems. Then, the research on travel behavior from the perspective of individual mobility patterns, including carpooling behavior and modal choice behavior, is summarized. In addition, existing studies on order matching and vehicle dispatching strategies, which are among the most important components of on-line ride-hailing systems, are collected and summarized. Finally, some of the critical challenges and opportunities in ride-hailing services are discussed

    Future Aware Pricing and Matching for Sustainable On-demand Ride Pooling

    Full text link
    The popularity of on-demand ride pooling is owing to the benefits offered to customers (lower prices), taxi drivers (higher revenue), environment (lower carbon footprint due to fewer vehicles) and aggregation companies like Uber (higher revenue). To achieve these benefits, two key interlinked challenges have to be solved effectively: (a) pricing -- setting prices to customer requests for taxis; and (b) matching -- assignment of customers (that accepted the prices) to taxis/cars. Traditionally, both these challenges have been studied individually and using myopic approaches (considering only current requests), without considering the impact of current matching on addressing future requests. In this paper, we develop a novel framework that handles the pricing and matching problems together, while also considering the future impact of the pricing and matching decisions. In our experimental results on a real-world taxi dataset, we demonstrate that our framework can significantly improve revenue (up to 17\% and on average 6.4\%) in a sustainable manner by reducing the number of vehicles (up to 14\% and on average 10.6\%) required to obtain a given fixed revenue and the overall distance travelled by vehicles (up to 11.1\% and on average 3.7\%). That is to say, we are able to provide an ideal win-win scenario for all stakeholders (customers, drivers, aggregator, environment) involved by obtaining higher revenue for customers, drivers, aggregator (ride pooling company) while being good for the environment (due to fewer number of vehicles on the road and lesser fuel consumed).Comment: 8 pages, 2 figures, published to AAAI-202

    Vehicle Dispatching and Routing of On-Demand Intercity Ride-Pooling Services: A Multi-Agent Hierarchical Reinforcement Learning Approach

    Full text link
    The integrated development of city clusters has given rise to an increasing demand for intercity travel. Intercity ride-pooling service exhibits considerable potential in upgrading traditional intercity bus services by implementing demand-responsive enhancements. Nevertheless, its online operations suffer the inherent complexities due to the coupling of vehicle resource allocation among cities and pooled-ride vehicle routing. To tackle these challenges, this study proposes a two-level framework designed to facilitate online fleet management. Specifically, a novel multi-agent feudal reinforcement learning model is proposed at the upper level of the framework to cooperatively assign idle vehicles to different intercity lines, while the lower level updates the routes of vehicles using an adaptive large neighborhood search heuristic. Numerical studies based on the realistic dataset of Xiamen and its surrounding cities in China show that the proposed framework effectively mitigates the supply and demand imbalances, and achieves significant improvement in both the average daily system profit and order fulfillment ratio

    Artificial Intelligence for Smart Transportation

    Full text link
    There are more than 7,000 public transit agencies in the U.S. (and many more private agencies), and together, they are responsible for serving 60 billion passenger miles each year. A well-functioning transit system fosters the growth and expansion of businesses, distributes social and economic benefits, and links the capabilities of community members, thereby enhancing what they can accomplish as a society. Since affordable public transit services are the backbones of many communities, this work investigates ways in which Artificial Intelligence (AI) can improve efficiency and increase utilization from the perspective of transit agencies. This book chapter discusses the primary requirements, objectives, and challenges related to the design of AI-driven smart transportation systems. We focus on three major topics. First, we discuss data sources and data. Second, we provide an overview of how AI can aid decision-making with a focus on transportation. Lastly, we discuss computational problems in the transportation domain and AI approaches to these problems.Comment: This is a pre-print for a book chapter to appear in Vorobeychik, Yevgeniy., and Mukhopadhyay, Ayan., (Eds.). (2023). Artificial Intelligence and Society. ACM Pres
    • …
    corecore