1,989 research outputs found

    Certified Training: Small Boxes are All You Need

    Full text link
    We propose the novel certified training method, SABR, which outperforms existing methods across perturbation magnitudes on MNIST, CIFAR-10, and TinyImageNet, in terms of both standard and certifiable accuracies. The key insight behind SABR is that propagating interval bounds for a small but carefully selected subset of the adversarial input region is sufficient to approximate the worst-case loss over the whole region while significantly reducing approximation errors. SABR does not only establish a new state-of-the-art in all commonly used benchmarks but more importantly, points to a new class of certified training methods promising to overcome the robustness-accuracy trade-off

    Learning Deep Neural Networks by Iterative Linearisation

    Full text link
    The excellent real-world performance of deep neural networks has received increasing attention. Despite the capacity to overfit significantly, such large models work better than smaller ones. This phenomenon is often referred to as the scaling law by practitioners. It is of fundamental interest to study why the scaling law exists and how it avoids/controls overfitting. One approach has been looking at infinite width limits of neural networks (e.g., Neural Tangent Kernels, Gaussian Processes); however, in practise, these do not fully explain finite networks as their infinite counterparts do not learn features. Furthermore, the empirical kernel for finite networks (i.e., the inner product of feature vectors), changes significantly during training in contrast to infinite width networks. In this work we derive an iterative linearised training method. We justify iterative lineralisation as an interpolation between finite analogs of the infinite width regime, which do not learn features, and standard gradient descent training which does. We show some preliminary results where iterative linearised training works well, noting in particular how much feature learning is required to achieve comparable performance. We also provide novel insights into the training behaviour of neural networks

    From Anecdotal Evidence to Quantitative Evaluation Methods:A Systematic Review on Evaluating Explainable AI

    Get PDF
    The rising popularity of explainable artificial intelligence (XAI) to understand high-performing black boxes, also raised the question of how to evaluate explanations of machine learning (ML) models. While interpretability and explainability are often presented as a subjectively validated binary property, we consider it a multi-faceted concept. We identify 12 conceptual properties, such as Compactness and Correctness, that should be evaluated for comprehensively assessing the quality of an explanation. Our so-called Co-12 properties serve as categorization scheme for systematically reviewing the evaluation practice of more than 300 papers published in the last 7 years at major AI and ML conferences that introduce an XAI method. We find that 1 in 3 papers evaluate exclusively with anecdotal evidence, and 1 in 5 papers evaluate with users. We also contribute to the call for objective, quantifiable evaluation methods by presenting an extensive overview of quantitative XAI evaluation methods. This systematic collection of evaluation methods provides researchers and practitioners with concrete tools to thoroughly validate, benchmark and compare new and existing XAI methods. This also opens up opportunities to include quantitative metrics as optimization criteria during model training in order to optimize for accuracy and interpretability simultaneously.Comment: Link to website added: https://utwente-dmb.github.io/xai-papers

    Unifying Gradients to Improve Real-world Robustness for Deep Networks

    Full text link
    The wide application of deep neural networks (DNNs) demands an increasing amount of attention to their real-world robustness, i.e., whether a DNN resists black-box adversarial attacks, among which score-based query attacks (SQAs) are most threatening since they can effectively hurt a victim network with the only access to model outputs. Defending against SQAs requires a slight but artful variation of outputs due to the service purpose for users, who share the same output information with SQAs. In this paper, we propose a real-world defense by Unifying Gradients (UniG) of different data so that SQAs could only probe a much weaker attack direction that is similar for different samples. Since such universal attack perturbations have been validated as less aggressive than the input-specific perturbations, UniG protects real-world DNNs by indicating attackers a twisted and less informative attack direction. We implement UniG efficiently by a Hadamard product module which is plug-and-play. According to extensive experiments on 5 SQAs, 2 adaptive attacks and 7 defense baselines, UniG significantly improves real-world robustness without hurting clean accuracy on CIFAR10 and ImageNet. For instance, UniG maintains a model of 77.80% accuracy under 2500-query Square attack while the state-of-the-art adversarially-trained model only has 67.34% on CIFAR10. Simultaneously, UniG outperforms all compared baselines in terms of clean accuracy and achieves the smallest modification of the model output. The code is released at https://github.com/snowien/UniG-pytorch

    The Neural Race Reduction: Dynamics of Abstraction in Gated Networks

    Get PDF
    Our theoretical understanding of deep learning has not kept pace with its empirical success. While network architecture is known to be critical, we do not yet understand its effect on learned representations and network behavior, or how this architecture should reflect task this http URL this work, we begin to address this gap by introducing the Gated Deep Linear Network framework that schematizes how pathways of information flow impact learning dynamics within an architecture. Crucially, because of the gating, these networks can compute nonlinear functions of their input. We derive an exact reduction and, for certain cases, exact solutions to the dynamics of learning. Our analysis demonstrates that the learning dynamics in structured networks can be conceptualized as a neural race with an implicit bias towards shared representations, which then govern the model's ability to systematically generalize, multi-task, and transfer. We validate our key insights on naturalistic datasets and with relaxed assumptions. Taken together, our work gives rise to general hypotheses relating neural architecture to learning and provides a mathematical approach towards understanding the design of more complex architectures and the role of modularity and compositionality in solving real-world problems. The code and results are available at this https URL
    • …
    corecore