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The rising popularity of explainable artificial intelligence (XAI) to understand high-performing black boxes, also raised the question
of how to evaluate explanations of machine learning (ML) models. While interpretability and explainability are often presented
as a subjectively validated binary property, we consider it a multi-faceted concept. We identify 12 conceptual properties, such as
Compactness and Correctness, that should be evaluated for comprehensively assessing the quality of an explanation. Our so-called
Co-12 properties serve as categorization scheme for systematically reviewing the evaluation practice of more than 300 papers published
in the last 7 years at major AI and ML conferences that introduce an XAI method. We find that 1 in 3 papers evaluate exclusively with
anecdotal evidence, and 1 in 5 papers evaluate with users. We also contribute to the call for objective, quantifiable evaluation methods
by presenting an extensive overview of quantitative XAI evaluation methods. This systematic collection of evaluation methods provides
researchers and practitioners with concrete tools to thoroughly validate, benchmark and compare new and existing XAI methods. This
also opens up opportunities to include quantitative metrics as optimization criteria during model training in order to optimize for
accuracy and interpretability simultaneously.

1 INTRODUCTION

The last decades have seen rapid development and extensive usage of Artificial Intelligence (AI) and Machine Learn-
ing (ML). The size and complexity of these models grew in pursuit of predictive performance. However, the focus on
accuracy alone is increasingly coming under criticism, since it leaves us with big black-box models with non-transparent
decision making which prevents users from assessing, understanding and potentially correcting the system. The
necessity for interpretable and explainable AI (XAI) therefore arises, aiming to make AI systems and their results more
understandable to humans [1]. Especially the emergence of deep learning in the last decade has led to a high interest in
developing methods for explaining and interpreting black-box systems.

With an increasing number of XAI methods, the demand grows for suitable XAI evaluation metrics [1, 21, 29, 86, 146].
This need is not only recognized by the AI community; also the Human Computing Interaction (HCI) community is
concerned with developing transferable evaluation methods for XAI [65]. In addition, a research agenda for Hybrid
Intelligence [6] has explicitly formulated a research question asking how the quality and strength of explanations can
be evaluated. Whereas traditional performance indicators exist to evaluate prediction accuracy and computational
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complexity, auxiliary criteria such as interpretability may not be easily quantified [63]. This difficulty is part of the
reason for the huge variation in explanation techniques, and the optimal evaluation methods and measures could
depend on the application domain, the type of explanation, the type of data, the background knowledge of the user and
the question to be answered. The XAI community has yet to agree upon standardized evaluation metrics to go beyond
often reported anecdotal evidence showing individual, convincing examples that pass the first test of having “face-
validity” [63]. Evaluation is then only based on “the researchers’ intuition of what constitutes a good explanation” [166].
The lack of quantitative evaluation impedes interpretability research, since anecdotal inspection is not sufficient for
robust verification [146]. Many authors (e.g. [2, 111, 136, 146]) argue that relying on such anecdotal evidence alone is
insufficient and that other aspects of the explanations should be evaluated as well.

Whereas interpretability can be presented as a binary property, we consider interpretability a multi-faceted char-
acteristic and argue that a quantitative way of measuring interpretability should result in a multi-dimensional view
indicating to which extent certain properties are satisfied. Having a set of quantitative, and preferably automated,
metrics for various properties would allow researchers and practitioners to a) assess and validate the interpretability of
a single explanation method and its explanations, b) objectively compare and benchmark multiple explanation methods,
c) add interpretability as optimization criteria during model training to deliberately tune the accuracy-interpretability
trade-off.

Contributions. This survey contributes to the demand for XAI evaluation methods with a systematic review on the
evaluation of explainability and interpretability1 methods. Specifically, we collected 606 papers (2014-2020) published
at twelve flagship computer science conferences in a structured manner, of which 312 introduced an XAI method2

(Section 3.1). Analysis of this set of papers results in quantitative insights into the extent and nature of research activity
in XAI and the evaluation of the resulting explanations (Section 5). For instance, we have found that feature importance
is the most common explanation type and that the majority of XAI methods explain single predictions rather than
providing global insights about the model reasoning. Moreover, 1 in 3 papers evaluate exclusively with anecdotal
evidence, and 1 in 5 papers evaluate with a user study. Additionally, we argue that explainability is a multi-faceted
concept and make this explicit with our Co-12 properties on explanation quality to identify what properties constitute a
good explanation. We use these as categorization scheme for the analysis of quantitative evaluation methods used in
papers that introduce, apply or evaluate an XAI method (361 papers in total). As a result, Section 6 presents an overview
of quantitative evaluation and benchmarking methods for explainable AI. Hence, we address the frequently reported
lack of quantitative evaluation methods [1, 21, 81, 86, 146] and respond to the call for automated and quantifiable
evaluation metrics for robust and falsifiable explainability research [146]. We hope that our collection of evaluation
methods will facilitate a more complete and inclusive evaluation for objectively validating and comparing new and
existing XAI methods. Our aim is that our overview serves as a handbook for researchers and practitioners that are
looking for suitable evaluation methods to evaluate multiple aspects of their XAI method. Lastly, Section 7 discusses
the implications of our results and identifies research opportunities for the XAI domain.

Comparison with other surveys. In contrast to most XAI surveys that review explainability methods, we focus on the
evaluation of explainability. Some surveys discuss evaluation as part of a broader review of XAI methods [1, 29, 32, 59,
81, 120, 170, 173, 175, 182, 303], or mainly discuss evaluation with user studies [52, 100, 136, 170]. Others discuss XAI

1Regarding terminology: ‘interpretability’ and ‘explainability’ are closely related and often used interchangeably in the XAI context [29, 32]. We equate
them in this survey as well. The same holds for ‘explainable artificial intelligence’ and ‘interpretable machine learning’.
2Our annotated dataset is available on an interactive website at https://utwente-dmb.github.io/xai-papers/

https://utwente-dmb.github.io/xai-papers/
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evaluation within a limited scope, by focusing on a particular application domain or subarea of XAI: Stepin et al. [239]
discuss XAI methods and their evaluation for contrastive and counterfactual explanations, Tintarev and Masthoff [250]
and Nunes and Jannach [182] discuss explanations and their evaluation for recommender systems, and Markus et
al. [162] focus on the healthcare domain. Closest related to our work is the survey of Zhou et al. [314] that presents a
concise overview and discussion regarding evaluating XAI without a structured literature review, and the recent work
of Vilone and Longo [263] that present a list of concepts related to explainability and discuss evaluation methods in
combination with explainable AI methods.

In contrast to previous surveys, we conducted a large-scale, systematic review on the evaluation of explainability in a
broad context, resulting in qualitative and quantitative insights and therefore aiming to offer guidance on future XAI
evaluations.

1.1 Definitions and Terminology

Explanations have been discussed for decades in many research areas. However, various contexts may require different
types of explanations. No definition therefore precisely captures the scope of all different settings. In this survey, we
focus on the context of explainable artificial intelligence and interpretable machine learning. Those terms, together with
explainability and interpretability (and to some extent also intelligibility) are typically used interchangeably [29, 32, 93,
177], although a few distinguish between them [21, 173]. We equate them (and use them interchangeably) to keep a
general, inclusive discussion and to ensure that we do not exclude work because of different terminology. We consider
related concepts such as fairness, safety, causality, ethical decision making and privacy [21, 63, 150] out of scope.

We frame explanations in the context of explainable artificial intelligence and define an explanation as follows:

Definition

An explanation is a presentation of (aspects of) the reasoning, functioning and/or behavior of a machine
learning model in human-understandable terms.

The definition of explanation is inspired by work of van Lent et al. [260] who coined the term XAI. Quoting van Lent
et al. [260]: “Ideally, this Explainable AI can present the user with an easily understood chain of reasoning from the
user’s order, through the AI’s knowledge and inference, to the resulting behavior”. The fact that the explanation should
be “easily understood” is also emphasized by others: “systems are interpretable if their operations can be understood by
a human” [27] and “an interpretation is the mapping of an abstract concept into a domain that the human can make
sense of” [173]. We adopt the phrasing of Doshi-Velez and Kim [63] who define interpretability as the ability “to explain
or to present in understandable terms to a human”.

We specifically included “reasoning, functioning and/or behavior” in our definition to capture different types of
explanations, which can be roughly related to the three approaches identified by Gilpin et al. [81]. Reasoning refers
to the process on how a model came to a particular decision. In Gilpin’s terms, it explains the “processing” of data to
answer the question “Why does this particular input lead to that particular output?”. Functioning refers to the (internal)
workings and internal data structures of the machine learning models, and therefore relates to the “representation of
data” [81]. Behavior refers to how the model globally operates without specifically analyzing the internal workings (e.g.
by observing input and output) which can “simplify interpretation” [81]. The inclusive or indicates that an explanation
can satisfy multiple goals.
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Terminology and Notation. In this paragraph, we introduce our terminology with corresponding notation to allow an
unambiguous review and discussion in the rest of this paper.

Let 𝑓 be a predictive machine learning model, such as a neural network or decision tree, trained to take some data
as input and predict the corresponding output. Given input 𝑥 , the predictive model 𝑓 outputs a prediction 𝑓 (𝑥). Let 𝑒
denote an explanation method which generates explanations. The explanation method can produce a local explanation
which explains a single prediction, notated as 𝑒 (𝑓 (𝑥)), or a global explanation explaining the predictive model as a
whole: 𝑒 (𝑓 ). The explanations generated by explanation method 𝑒 are of a certain explanation type, e.g. a decision tree,
heatmap or rule list. In case of an intrinsically interpretable model (also called self-explaining [9]), the predictive model
is already explainable by design, since interpretability is built into the architecture. For such self-explaining methods,
the model and explanation method are the same, i.e., 𝑒 = 𝑓 , such that 𝑓 (𝑥) = 𝑒 (𝑥).

2 RELATEDWORK: ANECDOTAL EVIDENCE, FUNCTIONAL EVALUATION AND USER STUDIES

We identified two main themes in the literature on XAI evaluations: 1) the difference between evaluating plausibility
and correctness of an explanation, 2) XAI evaluation with or without users. The following two subsections summarize
opinions from existing literature on each of these themes.

2.1 Evaluating Plausibility or Correctness of an Explanation

Whereas standard evaluation metrics exist to evaluate the performance of a predictive model, there is no agreed-upon
evaluation strategy for explainable AI. As a result, a common evaluation strategy is to show individual, potentially cherry-
picked, examples that look reasonable [177] and pass the first test of having “face-validity” [63]. Many authors argue
that relying on such anecdotal evidence alone is insufficient and can even be “misleading” [2]. Leavitt and Morcos [146]
note that researchers too frequently assume that an explanation method and the resulting explanation are faithful.
“Intuition is essential for building understanding” but “unverified intuition [...] can facilitate misapprehension” [146].
They argue that the lack of quantitative evaluation impedes interpretability research, since anecdotal inspection is not
sufficient for robust verification.

Related, several papers warn that evaluating the plausibility and convincingness of an explanation to humans is
different from evaluating its correctness, and these evaluation criteria should not be conflated. Jacovi and Goldberg [111]
argue that it is not guaranteed that a plausible explanation is also truthfully reflecting the reasoning of the model.
Petsiuk et al. [197] believe that “keeping humans out of the loop for evaluation makes it more fair and true to the
classifier’s own view on the problem rather than representing a human’s view”. Gilpin et al. [81] explain that an
unreasonable-looking explanation could indicate either an error in the reasoning of the predictive model, or an error in
the explanation producing method. Visual inspection on the plausibility of the explanation, such as anecdotal evidence,
cannot make this distinction. We can relate this to the well-known phrase “garbage in, garbage out": when the machine
learning model is trained on flawed data, it learns nonsensical relations which are in turn shown by the explanation.
The explanation might then be perceived as being wrong, although it is truthfully reflecting the model’s reasoning.
Zhang et al. [302] identify this as main shortcoming when evaluating explainable AI and state that checking whether an
explanation “looks reasonable” only evaluates the accuracy of the black box model and is not evaluating the faithfulness
of the explanation. Adebayo et al. [2] motivate this issue with a clear example: they show that saliency maps to explain
computer vision tasks can be highly similar to edge detectors. Visual inspection would be insufficient to differentiate
edge detection from model-sensitive explanations. “Here the human observer is at risk of confirmation bias when
interpreting the highlighted edges as an explanation of the class prediction.” [2].
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These commentaries relate to the inherent coupling of evaluating the black box’ predictive accuracy with explanation
quality. As pointed out by Robnik-Šikonja and Bohanec [214], the correctness of an explanation and the accuracy of the
predictive model may be orthogonal. Although the correctness of the explanation is independent of the correctness of
the prediction, visual inspection cannot distinguish between the two. Samek et al. [219] analyze this issue for heatmaps
that explain computer vision algorithms: “the heatmap quality does not only depend on the algorithms used to compute
a heatmap, but also on the performance of the classifier, whose efficiency largely depends on the model being used,
and the amount and quality of available training data.”. Gilpin et al. [81] find it unethical to optimize an explanation
towards hiding undesirable attributes. They argue that explanation methods should be evaluated on “how they behave
on the curve from maximum interpretability to maximum completeness” [81].

2.2 Evaluating With or Without User Studies

Related to the discussion on evaluating plausibility is the discussion on evaluating with or without users. Doshi-Velez
and Kim [63] propose to categorize the evaluation of interpretability with a 3-level taxonomy. The top level contains
application-grounded evaluation and involves human subject experiments with domain experts within a real application,
such that the method can be evaluated by the intended users with respect to a particular task. The second level contains
human-grounded evaluation and involves user studies with lay persons on simplified tasks that “maintain the essence of
the target application” [63]. This evaluation level is suitable when researchers want to evaluate more general notions of
explanation quality instead of one particular end-goal, or when reaching the target user is difficult due to e.g. high costs
or a low number of available domain experts. The controlled human experiments can result in subjective results by
asking users for perceived quality, or objective results by measuring performance of participants on specific tasks.

The third level of the taxonomy [63] contains the functionally-grounded evaluation approach, which includes
evaluation where human experiments are not needed but instead uses computational proxy measures for interpretability.
For example, measuring the size of the explanation or validating feature importance by perturbing model input. Doshi-
Velez and Kim [63] discuss the potential advantages of this evaluation type: besides saving time and costs, it can be
particularly appropriate when user studies are unethical or when the method is not yet mature enough for evaluation
with users. However, they also emphasize that these proxy metrics are best suited once user studies have already
confirmed the interpretability of the model class. This is in accordance with Miller et al. [167] who state that proxy
metrics are valid evaluations, but the authors support more intensive human evaluations to have “real-world impact”.

Others put extra arguments forward in favor of automated metrics where no user involvement is needed. User
studies for machine learning research often depend on online crowd platforms such as Amazon Mechanical Turk
which can lead to ethical issues. Critics argue that these platforms are largely unregulated and that workers are poorly
compensated [91, 224]. Additionally, besides saving time and resources [162], Herman [96] and Ancona et al. [11] argue
that user studies imply a strong bias towards simpler explanations that are closer to the user’s expectations, “at the
cost of penalizing those methods that might more closely reflect the network behavior” [11]. "A good explanation
method should not reflect what humans attend to, but what task methods attend to" [203]. This relates to the discussion
in Section 2.1 on anecdotal evidence as evaluation strategy. Validating explanations with users can unintentionally
combine the evaluation of explanation correctness with evaluating the correctness of the predictive model. Leavitt
and Morcos therefore plead for “clear, specific, testable and falsifiable hypotheses” that dissociate the evaluation of the
explanation method from the predictive model [146]. Quantitative evaluation also allows a formal comparison between
various explanation methods [162], and contrasting them under different applications and purposes [21]. In the context
of usability evaluation in the HCI community, Greenberg and Buxton [85] argue that there is a risk of executing user
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studies in an early design phase, since this can quash creative ideas or promote poor ideas. Miller therefore argues
that proxy studies are especially valid in early development [167]. Qi et al. [206] indicate that “evaluating explanations
objectively without a human study is also important because simple parameter variations can easily generate thousands
of different explanations, vastly outpacing the speed of human studies”.

2.3 Discussion: Relation to Our Work

The discussions within the field have illustrated that evaluation of explanations is not self-evident and that there can be
various pitfalls. The opinions also show that explainability is indeed not a binary property, and that various aspects of
an explanation should be evaluated independently of each other. Since knowledge about which aspects constitute a
good explanation is scattered, this survey presents an aggregated view of what to evaluate by introducing the so-called
Co-12 properties on explanation quality (Section 3.4). Our Co-12 property ‘Correctness’ addresses the faithfulness of
the explanation with respect to the predictive model, whereas our term ‘Coherence’ addresses the plausibility of an
explanation. Hence, both properties can be evaluated separately. With this survey, we also analyze the XAI evaluation
practice in the period 2014-2020, and, among other things, quantify to what extent anecdotal evidence and user studies
are used as evaluation methods for XAI (Section 5). In order to respond to the call for dissociated evaluation methods, we
additionally present an overview of quantitative evaluation methods we identified and categorize them along our Co-12
properties. This contribution concretely addresses how to evaluate different aspects of an explanation, and therefore
provides conceptual guidance to the XAI community. Since application-grounded and human-grounded evaluation is
already discussed in detail in other work (e.g. [52, 100, 136]), we specifically focus on functionally-grounded evaluation.
Therefore, Section 6 presents an extensive overview of functionally-grounded quantitative evaluation methods, and
Section 6.13 summarizes quantitative evaluation methods with user studies.

3 METHODOLOGY

3.1 Identification of Paper Candidates

We collected papers in a structured manner to provide both quantitative insights about the XAI domain and qualitative
results based on a large corpus of scientific work on XAI evaluation methods. Since the literature on XAI is highly
diverse and distributed across different (sub)disciplines, we selected literature by filtering on publication venue, date
and title.

Publication Venue. To obtain a representative and sufficiently large, yet feasible selection of papers, we considered
literature from all areas of AI, ranging from Computer Vision and Information Retrieval to Natural Language Processing
and Data Mining. Specifically, we considered literature from the following twelve prominent3 conferences: AAAI,
IJCAI, NeurIPS (formerly NIPS), ICML, ICLR, CVPR, ICCV, ACL, WWW, ICDM, SIGKDD (also called KDD), SIGIR. This
selection criterion also implies that all work included in the set is original, peer-reviewed and written in English. We
are aware of the fact that we exclude relevant papers published at other venues, but do believe that our selection of
venues is sufficiently representative to enable extrapolation of our results and conclusions to XAI literature as a whole.

Publication Year. We scoped our selection to work published from 2014 to 2020. This criterion is motivated by the
fact that XAI has gained renewed interest since the emergence of deep learning, and the fact that annual international
conference series dedicated exclusively to explainability or interpretability were organized from 2014 onwards [1].

3As indicated by their A* ranking according to the CORE 2021 rankings portal (http://portal.core.edu.au/conf-ranks/).

http://portal.core.edu.au/conf-ranks/
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Screening for 
companion papers

Excluded from 
survey

Applying inclusion 
criteria

Excluded from 
survey

Initial search
606

112 133

Analysis of quantitative 
evaluation methods

Original work introducing, applying and/or 
evaluating one or more methods for explaining a 

machine learning model.

Categorization of XAI methods
and analysis of evaluation practice

Original work introducing a method 
for explaining a machine learning model. (filter)

361 312

Papers covered in survey

494

Fig. 1. Flow diagram showing the number of papers through the different phases of the reviewing process.

Keywords in Title.We conducted a keyword search in publication titles with the following search query: explain*
OR explanat* OR interpret* to capture terms including explainable, explaining, explanation, interpretable and
interpretability. We are aware of the fact that this query excludes papers with related terms (such as intelligibility and
transparency), and papers that specify a specific explanation method (such as feature attribution). However, to reflect
time and resource constraints, we aimed for high precision instead of high recall. For a similar reason, we did not
consider keywords in abstracts or full-texts, since we found that searching for general terms as explain leads to a surge
in irrelevant results.

Final Search Query. We used the search engine of computer science bibliography DBLP4 to collect the initial
selection of papers. Combining the aforementioned criteria results in the following query to DBLP:
explain | explanat | interpret year:2020: | year:2019: | year:2018: | year:2017: | year:2016: | year:2015: |

year:2014: venue:ICDM: | venue:KDD: | venue:NIPS: | venue:NeurIPS: | venue:CVPR: | venue:ICCV: | venue:AAAI:

| venue:IJCAI: | venue:SIGIR: | venue:ACL: | venue:WWW: | venue:ICLR: | venue:ICML:

This search, conducted on 4th of May 2021, resulted in 606 papers.

3.2 Inclusion and Exclusion

Before screening the main content of each paper according to inclusion criteria, we applied an exclusion criterion since
we found that the search result from the query contained more than the main conference papers. Figure 1 summarizes
the inclusion and exclusion process.

Exclusion.Wemanually excluded ‘companion papers’, which include extended abstracts and papers fromworkshops,
doctoral consortium and early career tracks, invited talks, senior member presentations, demonstrations, companion
proceedings, challenges and tutorials. Applying this exclusion criterion to the initial query result resulted in a set of 494
papers.

Inclusion. The resulting 494 papers are screened according to an inclusion criterion, in order to only include relevant
papers in our analysis. With our inclusion criterion, we focus on papers in the explainable AI domain and therefore
exclude papers that use the terms “explain” or “interpret” in other contexts.

Inclusion Criterion

Original work introducing, applying and/or evaluating one or more methods for explaining a machine
learning model.

With “introducing”, we mean that the work presents a new method for explaining a machine learning model. The term
“machine learning” implies learning from data. Since we require that this machine learning model should be explained
(see Section 1.1 for the definition of ‘explanation’), we do not include papers that only explain the data rather than
explaining how a predictive model does something.
4https://dblp.org/

https://dblp.org/
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Applying the inclusion criteria to the set of 494 papers, led to 361 papers being included, as shown in Figure 1.
Subsequently, we can apply a filter that only selects the papers that introduce an XAI method, resulting in 312 papers.
We apply this filter to analyze how introduced XAI methods are evaluated when they are first presented (Section 5).
For collecting all evaluation methods, we review all 361 included papers since 49 papers do not introduce a new XAI
method, but could contain relevant evaluation metrics to compare and evaluate existing XAI methods. We do not want
such papers to skew our quantitative results in Section 5, but include them in our evaluation overview in Section 6 for
completeness.

3.2.1 Inclusion and Reviewing Process. Screening papers for inclusion and reviewing them according to a review
protocol was a collaborative task. All authors have a background in machine learning and have explainable AI as
research interest. Each author reviewed papers individually but there was frequent communication within the team
to align and verify inclusion and categorization decisions. For 81 papers, the inclusion criteria were checked by two
reviewers in order to measure the inter-rater agreement for quality assurance. Besides a random sample of papers
that were reviewed twice, the majority in this set were papers where the initial reviewer indicated that they were
not confident about the decision, after which another reviewer checked the paper. We therefore emphasize that the
following agreement metrics can be biased towards lower scores due to the perceived difficulty of the papers in the
specific subset. The two reviewers were in agreement on the inclusion decision for 68 out of 81 papers, resulting in a
Cohen’s kappa ^ = 0.625 and a Matthews correlation coefficient𝑀𝐶𝐶 = 0.647 (the latter is said to be better suited for
binary and imbalanced data [51]). These results indicate substantial agreement [142]. In case of disagreement or low
confidence by both reviewers, discussion took place to come to a final inclusion decision. In addition to disagreement,
also more informal discussion took place whenever a reviewer was in doubt on aspects of the review protocol. After
reviewing, the first author did an extra check regarding the categorization of evaluation methods of all included papers.

3.3 Review Protocol: Categorization of Explainable AI Methods

For further analysis of the included papers, we categorize each paper and analyze the properties of the explanation
method and the evaluation of the explanations in more detail. For each included paper, we review the main content and
do not consider appendices and supplementary material. Each included paper is first categorized along six dimensions,
in order to create a structured overview of XAI methods. Figure 2 summarizes the 6 dimensions and their corresponding
categories. The following paragraphs discuss three dimensions in more detail.

We adopt the taxonomy of Guidotti et al. [86], presenting four types of problems that an XAI method can solve: (i)
Model Explanation – globally explaining model 𝑓 through an interpretable, predictive model; (ii) Model Inspection
– globally explaining some specific property of model 𝑓 or its prediction; (iii) Outcome Explanation – explaining an
outcome/prediction of 𝑓 on a particular input instance; (iv) Transparent Box Design – the explanation method is an
interpretable model (i.e., 𝑒 = 𝑓 ) also making the predictions. Note that a set of outcome explanations can collectively
comprise a global explanation for model inspection (cf. e.g. [74, 158, 213]). For details regarding this taxonomy, we refer
to Section 4 of the survey by Guidotti et al. [86].

We identified three different types of general types of methods used to explain a machine learning model: i)
Post-hoc explanation methods (also called reverse engineering [86]): explain an already trained predictive model; ii)
Interpretability built into the predictive model, such as white-box models, attention mechanisms or interpretability
constraints (e.g. sparsity) included in the training process of the predictive model; and iii) Supervised explanation
training, where a ground-truth explanation is provided in order to train the model to output an explanation.
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explanation, type of explanation problem that is addressed, type of predictive model to be explained (𝑓 ), type of task for which model
𝑓 is used, and the type of method used to explain. Papers can address multiple categories per dimension.
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Fig. 3. Our review protocol when reviewing the evaluation of an XAI method.

Evaluation methods are often specific for a specific type of explanation, thus we categorize each paper by type
of explanation. In contrast to most XAI surveys, we disregard the explanation construction approach but focus on
the explanation’s output format. Since we could not find a complete and recent overview of explanation types, we
reviewed recent XAI surveys [16, 59, 171, 287] and adapted and extended the categories identified by Guidotti et al. [86]
with these insights. We grouped some explanation types and separated others based on the expected difference in
evaluation metrics resulting in the 14 categories outlined in Table 1. Note that some explanation methods combine
multiple explanation types, thus the categories are not mutually exclusive w.r.t. explanation methods. We do not
consider counterfactual explanations a separate category. Although counterfactual explanations answer a different type
of question, the type of explanation utilized is still one of the above categories.
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Table 1. Overview of types of explanations.

Category Description and Examples

Decision Rules Logical rules, including decision sets [139], anchors [213], decision tables [108] and pro-
grams [261].

Decision Tree Rooted graph with conditional statement at each node, e.g. ProtoTree [179].

Disentanglement Disentangled representation, where each disjoint feature might have a semantic meaning,
e.g. InfoGAN [44].

Feature
Importance

Set of 1-dimensional non-binary values/scores to indicate feature relevance, feature contribution
or attribution. A feature is not necessarily an input feature to predictive model 𝑓 , but it should be
a feature in the explanation. Examples include SHAP [157] and importance scores by LIME [212].

Feature Plot Plot or figure showing relations or interactions between features or between feature(s) and
outcome. Examples include Partial Dependence Plot [73], Individual Conditional Expectation
plot [82] and Feature Auditing [5].

Graph Graphical network structure with nodes and edges, e.g. Abstract Policy Graph [252], Knowledge
graph [275], Flow graph [218] and Finite State Automata [103].

Heatmap Map with at least 2 dimensions visually highlighting non-binary feature attribution, activation,
sensitivity, attention or saliency. Includes attention maps [222], perturbation masks [71] and
Layer-Wise Relevance Propagation [20].

Localization Binary feature importance. Features can be any type of covariate used in the explanation,
such as words, tabular features, or bounding boxes. Examples include binary maps with image
patches [212], segmentation [104] and bounding boxes [305].

Prototypes (Parts of) Representative examples, including concepts [127], influential training instances [90],
prototypical parts [36, 179], nearest neighbors and criticisms [125].

Representation
Synthesis

Artificially produced visualization to explain representations of the predictive model. Examples
include generated data samples [235], Activation Maximization [180] and feature visualiza-
tion [183].

Representation
Visualization

Charts or plots to visualize representations of the predictive model, including visualizations of
dimensionality reduction with scatter plots [259], visual cluster analysis [151] and Principal
Component Analysis.

Text Textual explanation via natural language, e.g. [30, 208].

White-box Model Intrinsically interpretable models (excluding decision rules). Predictive model 𝑓 is interpretable
and therefore acts as explanation. Examples include a scoring sheet [258] and linear regression.
Decision Rules and Decision Trees do not fall into this category, since they are categories on
their own.

Other Explanation that does not fit any other category.

3.4 Review Protocol: Evaluation of XAI methods

When reviewing the evaluation of an XAI method, we distinguish between evaluation with users and without users.
We focus on the evaluation of explanation method 𝑒 and/or its produced explanations. Hence, this is not about the
evaluation of predictive model 𝑓 , and we do not take the evaluation of predictions into account. Therefore, evaluation
metrics that evaluate 𝑓 or the predictions of 𝑓 , such as task accuracy, analyzing bias of 𝑓 , or computation time are not
included. Additionally, evaluation metrics for 𝑒 that do not directly influence explanation quality (such as run time or
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construction overhead of 𝑒 [246]), are also excluded. Lastly, we excluded quantitative methods that use explanations to
get more insights into the predictive model (e.g. analyzing whether 𝑓 has social biases). Such approaches are not about
evaluating explanations, but rather utilize explanations to investigate model 𝑓 . For each paper we analyzed whether
exclusively anecdotal evidence is presented for evaluating the quality of the XAI method. For all other evaluation
methods, we collected a short description on how it works, whether the measure is qualitative or quantitative and
which property is evaluated. Additionally, for user studies, we assess whether the study is application-grounded, i.e. in
a real application with domain experts (following the taxonomy of [63]) or human-grounded, i.e. using simplified, but
similar tasks with lay persons.

3.4.1 Co-12 Explanation Quality Properties. Different aspects regarding explanation quality can be evaluated, as also
discussed in Section 2.1. We therefore argue that explainability is a non-binary characteristic, that can be measured by
evaluating to what degree certain properties are satisfied. Based on conceptual literature that discusses explanation
quality and properties of a good explanation, we identified twelve desired explanation properties that together present
an aggregated view of what to evaluate. We paid specific attention to covering as much of the reviewed properties as
possible, minimizing semantic overlap between properties and grouping different terminology that describe a similar
property. Our so-called Co-12 properties (pronounce as co-twelve) regarding explanation quality are presented below
and summarized in Table 2.

Correctness addresses the truthfulness/faithfulness of the explanation with respect to predictive model 𝑓 , the model
to be explained. Hence, it indicates how truthful the explanations are compared to the “true” black box behavior (either
locally or globally). Note that this property is not about the predictive accuracy of the black box model, but about
the descriptive accuracy of the explanation [177]. Ideally, an explanation is “nothing but the truth” [132], and high
correctness is desired [9, 17, 26, 111, 132, 133, 214, 237, 246, 280, 289, 302].

Completeness addresses the extent to which the explanation explains predictive model 𝑓 . Ideally, the explanation
provides “the whole truth” [132]. High completeness is desired [57, 133, 233, 237, 302, 314, 314] in order to provide
enough detail, but it should be balanced with compactness and correctness: “don’t overwhelm” [133].

• Reasoning-completeness indicates the extent to which the explanation describes the entire internal dynamic
of the model [314]. One extreme is “revealing all the mathematical operations and parameters in the system” [81]
such as white-box models which are by definition fully reasoning-complete. The other extreme are global
surrogate models that are trained to give the same predictions as black box 𝑓 , without considering any internal
reasoning of 𝑓 . A design choice should be made regarding the reasoning-completeness by selecting an explanation
type suited for a specific context. Therefore, reasoning-completeness is often only evaluated qualitatively to
compare different explanation types.

• Output-completeness addresses the extent to which the explanation covers the output of model 𝑓 . Thus, it is
a “quantification of unexplainable feature components” [302] and measures how well the explanation method
agrees with the predictions of the original predictive model [32, 111].

Consistency checks that identical inputs have identical explanations [14, 101]. In practice, this property addresses
to what extent the explanation method is deterministic. Additionally, for explanation methods that do not consider the
internals of the black box but only observe input and output, consistency regards implementation invariance which
states that two models that give the same outputs for all inputs should have the same explanations [32, 214]. Atanasova
et al. [17] add that models with the same architecture but trained from different random seeds should give the same
explanations when they follow the same reasoning path. For explanation methods that do consider the internals of
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Table 2. Our Co-12 explanation quality properties, grouped by their most prominent dimension: Content, Presentation or User.

.
Co-12 Property Description

Co
nt
en
t

Correctness Describes how faithful the explanation is w.r.t. the black box.
Key idea: Nothing but the truth

Completeness Describes how much of the black box behavior is described in the explanation.
Key idea: The whole truth

Consistency Describes how deterministic and implementation-invariant the explanation method is.
Key idea: Identical inputs should have identical explanations

Continuity Describes how continuous and generalizable the explanation function is.
Key idea: Similar inputs should have similar explanations

Contrastivity Describes how discriminative the explanation is w.r.t. other events or targets.
Key idea: Answers “why not?” or “what if?” questions

Covariate complexity Describes how complex the (interactions of) features in the explanation are.
Key idea: Human-understandable concepts in the explanation

Pr
es
en
ta
tio

n

Compactness Describes the size of the explanation.
Key idea: Less is more

Compositionality Describes the format and organization of the explanation.
Key idea: How something is explained.

Confidence Describes the presence and accuracy of probability information in the explanation.
Key idea: Confidence measure of the explanation or model output

U
se
r

Context Describes how relevant the explanation is to the user and their needs.
Key idea: How much does the explanation matter in practice?

Coherence Describes how accordant the explanation is with prior knowledge and beliefs.
Key idea: Plausibility or reasonableness to users

Controllability Describes how interactive or controllable an explanation is for a user.
Key idea: Can the user influence the explanation?

the black box, Montavon [172] argues that implementation invariance is still a desired property, but should then be
evaluated without changing the actual function.

Continuity considers how continuous (i.e. smooth) the explanation function is that is learned by the explanation
method. A continuous function ensures that small variations in the input, for which the model response is nearly
identical, do not lead to large changes in the explanation [9, 17, 26, 32, 101, 172, 214, 280, 289]. Continuity also adds to
generalizability beyond a particular input [166, 237] or generalizability to new contexts [238].

Contrastivity addresses the discriminativeness of an explanation and aims to facilitate comparisons in relation to
other targets or events [32]. Miller argues that an explanation should not only explain an event, but explain it “relative
to some other event that did not occur” [166]. Honegger [101] adds the separability property that non-identical instances
from different populations must have dissimilar explanations.
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Covariate complexity considers the complexity of the covariates (i.e. features) used in the explanation in terms of
semantic meaning and interactions between the covariates and the target. The covariates in the explanation should
be comprehensible [32], and “concepts should have an immediate human-understandable interpretation” [9]. This
could mean that the variables used in the explanation are different from the features given as input to model 𝑓 , since
“interpretable data representations” are desired [212]. Also non-complex interactions between features are desired, such
as monotonicity [63]. Wilson et al. [279] found that humans favor smooth and simpler functions, and have inductive
biases towards recognizable patterns, such as step functions or a sawtooth pattern.

Compactness considers the size of the explanation and is motivated by human cognitive capacity limitations.
Explanations should be sparse, short and not redundant to avoid presenting an explanation that is too big to under-
stand [26, 57, 166, 233, 237, 314].

Compositionality considers the format, organization and structure of the explanation [32], such that the way in
which the explanation is presented to the user increases its “clarity” [314]. As mentioned by Huysmans et al. [108], “some
representation formats are generally considered to bemore easily interpretable than others”. Hence, this property is about
how something is explained instead of what is explained. Examples include the usage of higher-level information [9],
abstractions [63, 246] or suitable terminology [246], and not using explanations that are circular [238].

Confidence concerns whether the explanation has a measure of certainty or other probability information. It can
reflect two facets of certainty: i) a confidence measure of the black box prediction [17, 32, 214, 289], or ii) the truthfulness
or likelihood of the explanation [17, 166, 233]. Opinions are divided about the last facet of this property, since it is
argued that referring to probabilities might not be so effective, since people have difficulties to correctly estimate
probabilities [166].

Context addresses the extent to which the user and their needs are taken into account for comprehensible ex-
planations [32]. Explanations should be relevant to the user’s needs and level of expertise [166, 237]. Srinivasan and
Chander [238] argue, from a cognitive science perspective, that explanations should not only serve AI scientists, but a
whole variety of stakeholders, e.g. policy makers and customers.

Coherence assesses to what extent the explanation is consistent with relevant background knowledge, beliefs and
general consensus [32, 166, 237] and hence addresses reasonableness [81], plausibility [111] and “agreement with human
rationales” [17]. It is often argued that evaluating coherence alone (with e.g. anecdotal evidence) is not sufficient [146],
and that coherence and correctness should not be conflated but evaluated separately [111]. Note that this property
addresses external coherence, and is different from internal coherence to indicate that parts in an explanation fit
together [299].

Controllability indicates to what extent a user can control, correct or interact with an explanation [32, 133, 166, 237],
since it is argued that “explanations are social” [166].

4 OVERALL STATISTICS OF INCLUDED PAPERS

Figure 4a shows that the number of papers on explainable AI and interpretable machine learning is growing over the
years. There were few papers in our set published in 2014 or 2015 (5 and 3 in total, respectively), which could be related
to the fact that the topic itself was less popular or that terms as ‘interpretability’ and ‘explainable AI’ were not yet
used in these years [217]. We see a steady increase of included papers since 2016. Especially 2018 shows a significant
increase, which corresponds with findings by Barredo Arrieta et al. [21]. However, our paper selection does not show
an exponential growth as found by Adadi and Berrada [1], although some conferences such as ACL and ICML do show
an exponential increase. NeurIPS (formerly NIPS) is in our dataset the conference with the most papers on explainable
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(b) Number of included papers that do not introduce,
but rather apply and/or evaluate an XAI method,
plotted by publication year.

Fig. 4. Number of included papers per publication year.

AI and interpretable ML. Especially the large jumps in 2018 and 2020 are striking. Also at AAAI the number of papers
on explainability increased substantially over the last years.

Additionally, we analyzed the number of papers that do not introduce an XAI method, but apply or evaluate them
(i.e., the 49 papers that would be excluded by the filter as shown in Figure 1). Figure 4b shows that this number
increased substantially in 2019 and again in 2020. This trend could indicate that the awareness regarding evaluation
and comparison of XAI methods has grown in the last years, which again could point towards an increasing maturity
of the field.

5 OVERVIEW OF PAPERS INTRODUCING AN XAI METHOD

In this section we analyze the 312 papers that introduce a method for explaining amachine learningmodel. An interactive
website for this dataset is available at https://utwente-dmb.github.io/xai-papers/. Section 5.1 presents summary statistics
regarding the categorization of XAI methods, along the six dimensions as presented in Section 2: type of data, type of
predictive model, type of problem, type of task, type of explanation and type of method used to explain. Section 5.2
presents statistics regarding the evaluation of introduced XAI methods.

5.1 Categorization and Analysis of XAI Methods

Figure 5 visualizes the categorization of papers per dimension. Generally, it can be seen that the top-3 in each dimension
covers the majority of the papers. Especially the imbalance regarding the types of models to be explained is striking,
since a large majority of the literature (75%) focuses on explaining neural networks, which could be due to their black
box nature and state-of-the-art performance. The ‘other’ category follows with 17%, which usually involves models

https://utwente-dmb.github.io/xai-papers/
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Fig. 5. Categorization of papers introducing an explainable AI method, following the six dimensions as presented in Section 3.3.
Percentages are rounded to the nearest integer. Note that categories are non-exclusive, so a paper can fall into multiple categories
per dimension. *: category is manually added after the reviewing process and might therefore not be complete (i.e. high precision,
potentially low recall).

which are introduced in the paper and which are specifically designed to explain a certain prediction task. 15% of the
papers are XAI methods which can, according to the authors, be applied to any predictive model. This model-agnostic
category includes for example methods that explain a latent representation which can come from any model.

Our analysis also shows that there is a high diversity in explanation types. Interesting is that the top-3 explanation
types are dominated by feature importance methods: 27% of the papers use standard feature importance scores, followed
by heatmaps (2-dimensional feature importance) and localization (binary feature importance). The types of data that are
given as input to predictive model 𝑓 are also diverse, although images, text and tabular data are most used. Additionally,
we found that image data make up the majority for heatmap explanations whereas textual input is mostly used for
textual explanations. Feature importance seems to be the most generally applicable explanation type since it is used for
all data types, and is also often used for ‘Other’ data types that do not fall into the predefined categories.

We also categorized the main task of the predictive models. These statistics might be highly influenced by our
selection of publication venues and also the difficulty of a task can play a role. A great majority (63%) of the papers
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present a model for classification. Besides the fact that classification is a broad concept, it can also be related with
the popularity of outcome explanations: explaining a particular classification decision can be a good use case for
outcome explanations. As shown in Figure 5, the type of problem that is addressed in 64% of the papers is the outcome
explanation, meaning that an explanation aims to explain a single prediction. In contrast, the second modest addressed
type, model inspection (30% of the papers), gives global explanations about some property of predictive model 𝑓 , such
as global feature importance. This can imply that users or model developers are more interested in understanding
specific decisions than getting global insights, or that global XAI methods are more difficult to develop. The transparent
box designs are by themselves already interpretable, such as a decision tree. Few papers present a model explanation,
meaning that a second, interpretable model is learned to mimic the output of the black box. We hypothesize that the
model explanation is not often addressed since there is no guarantee that the original black box and the interpretable
surrogate model agree on their internal reasoning [217]. Hence, the resulting explanation could be incorrect with
respect to the workings of the original predictive model. Interesting to add is that the outcome explanation is also the
dominant problem for papers that do not introduce, but apply or evaluate an existing XAI method. Specifically, 82%
of the papers excluded by the filter focus on outcome explanations. This might indicate that outcome explanations
are easier to apply and compare among different XAI methods than global explanations as model inspection, model
explanations and transparent box designs.

Lastly, we see that the type of method used to explain is dominated by two types: post-hoc explanation methods that
aim to explain an already trained model, and interpretability built into the predictive model. Built-in interpretability is a
broad category ranging frommodels that are intrinsically interpretable to additions or restrictions to the predictive model
architecture. The latter includes attention mechanisms, regularizers in the training process to improve interpretability,
or a combined architecture that merges the prediction and explanation task. A minority produces explanations based
on supervised explanation training, such as optimizing the XAI method to generate explanations that are similar to
ground-truth explanations from a dataset. Interesting to note is that all supervised explanation training methods in our
dataset produce outcome explanations.

5.2 Statistics on XAI Evaluation Practices

This section present statistics regarding the evaluation of XAI methods by analyzing the 312 included papers that
introduce a method for explaining a machine learning model (inclusion criterion with filter).

Summary statistics:
• 33% only evaluated with anecdotal evidence
• 58% applied quantitative evaluation
• 22% evaluated with human subjects in a user study, of which 23% evaluated with domain experts, i.e. application-
grounded [63].

Earlier research has found that few papers quantitatively evaluated their explanations. Only 5% of the papers analyzed
by Adadi et al. (2018) [1] evaluated their interpretable machine learning method and quantified its relevance. Nunes
and Jannach reported that only 21% of their 190 analyzed studies (1990-2017) that presented an XAI technique or
tool contained “any form of evaluation, except from toy examples” [182]. We have reviewed more papers, including
more recent papers, to shed light on the evaluation practice from 2014 to 2020. Our statistics regarding the usage of
quantitative evaluation are higher, which, although possibly influenced by the venues we collected from, indicates that
the evaluation of XAI has become more extensive over the years. Some of the papers that do not quantitatively evaluate
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Fig. 6. Evaluation practice of the 312 papers that introduce a method for explaining a machine learning model. Years 2014 and 2015
are excluded from this graph, since only 5 and 3 papers respectively were included for those years, leading to unreliable statistics.

their XAI method argue that their model architecture is inherently interpretable, and therefore do not explicitly evaluate
its interpretability. Lipton [150] however notes that even white-box models might not be interpretable anymore when
their size exceed the limited capacity of human cognition, and Jacovi and Goldberg [111] suggest that intrinsically
interpretable methods should be held to the same standards as post-hoc interpretation methods with similar evaluation
methods. Others do not explicitly evaluate their method with quantitative evaluation metrics, but present mathematical
theory to support their claims (e.g. [39, 97]).

Figure 6 gives more insight into the XAI evaluation practice over time. It confirms that the fraction of papers that
quantitatively evaluated their XAI method has slightly increased over the years, whereas the fraction of papers only
evaluating with anecdotal evidence shows a decreasing trend. Hence, the evaluation practice in the XAI domain is
effectively maturing. The number of papers including a user study for evaluation remains however relatively constant
over the years at around 20%. When splitting these numbers per venue, Figure 7 shows that generally the more
application-oriented conferences evaluate only with anecdotal evidence in roughly half of the cases. In contrast, the
more theoretical venues have percentages around 20%-30%. We could not see a clear trend regarding the usage of user
studies, although the relative differences between conferences is striking.

Figure 8 analyzes for each paper the evaluated Co-12 properties, as introduced in Section 3.4. It can be seen that
the majority of the papers that introduce an XAI method and quantitatively evaluate it, evaluate one or two Co-12
properties. Additionally, the figure shows that Coherence and Output-completeness are the Co-12 properties that are
evaluated most often, followed by Correctness, Compactness and Covariate complexity.

6 QUANTITATIVE EVALUATION METHODS FOR XAI

This section presents quantitative evaluation methods that we identified in the 361 included papers. This implies that
we do not only consider papers that introduce a method for explaining a machine learning model, but also include the
papers that apply or evaluate an XAI method. Our goal is that this section can serve as inspiration and guidance for
researchers and practitioners looking for suitable evaluation methods for new or existing XAI methods. We focus on
functionally-grounded evaluation methods (i.e., without user studies) and summarize quantitative evaluation methods
with user studies in Section 6.13.
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Fig. 8. Total number of unique Co-12 properties quantitatively evaluated in a paper that introduces an XAI method.

We clustered all identified quantitative evaluation metrics based on the applied methodology and named each of
these resulting evaluation methods. Table 3 describes each evaluation method we identified, while listing the types of
explanations that were mainly related with this method and the papers that applied this evaluation method. Variations
and additional information regarding each evaluation method are discussed in Sections 6.1 to 6.12, grouped per Co-12
property. For details regarding the implementation of the specific evaluation metric we refer to the original papers.
Table 4 relates each evaluation method to the corresponding Co-12 properties. The columns indicate what Co-12
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properties can be measured with the corresponding evaluation method. We note that this does not mean that all
cited authors also evaluated all possible properties, but that each related Co-12 property was evaluated in at least one
paper. For a thorough and structured evaluation, we argue that it would be good practice to select multiple evaluation
methods that together cover as much of the Co-12 properties as possible. Such an extensive evaluation would result in a
multi-dimensional view on the degree of explainability.

6.1 Functionally Evaluating Correctness

The correctness property addresses to what extent the explanation is faithful to the predictive model it explains.
Important to emphasize here is that an explanation that looks reasonable to a user is not guaranteed to also be truthfully
reflecting the reasoning of the model [111]. Checking the correctness of an explanation with respect to the predictive
model 𝑓 is therefore different from the plausibility to the user.

The Model Parameter Randomization Check was introduced by Adebayo et al. [2] as “sanity check” for the
faithfulness and sensitivity of the explanation to predictive model 𝑓 . Perturbation of model 𝑓 can be done by randomizing
parameters or re-initializing weights, after which the explanation is expected to change. If the explanation after
randomization is the same as the original explanation, then the explanation is not sensitive to 𝑓 and hence not
correct w.r.t. reasoning of model 𝑓 . (Our recommendation is to do multiple randomization runs to ensure that the two
explanations are not accidentally similar.) However, if the explanations are different, it is not a guarantee that the
original explanation is fully correct. It is therefore presented as a sanity check: the sensitivity of 𝑒 to parametrization
changes in predictive model 𝑓 is a necessary but not sufficient condition for correctness. A related method is the
Explanation Randomization Check which is applicable to explanations that are built into predictive model 𝑓 , such
as attention and backpropagated relevance vectors. Permuting and randomizing the explanation within the model
should change the model’s output, and therefore evaluates the sensitivity of the explanation to the predictive model.

The White Box Check is designed to evaluate correctness by training a white-box model as predictive model and
applying the explanation method to the white-box model as if it was a black box. Since the reasoning of a white-box
model is known, the explanation can subsequently be compared with the true reasoning in order to evaluate how
closely the explanation resembles the model’s reasoning. Therefore, also Reasoning-completeness is evaluated since the
‘golden’ reasoning is known and can be compared to the degree of information in the explanation. Instead of a fully
transparent model, Ramamurthy et al. [209] use a random forest and compare the explanation with feature importance
scores output by the forest based on established methodology for these type of models. The Controlled Synthetic
Data Check is useful for evaluating explanations for black box models. By designing a dataset in such a way that with
relatively high confidence one could say that predictive model 𝑓 reasons in a particular way, ‘gold’ explanations can be
created that follow the data generation process. Subsequently, the agreement of the generated explanations with these
true explanations can be measured. For example, Oramas et al. [160] generate an artificial image dataset of flowers
where the color is the discriminative feature between classes. They subsequently compare their explanations with the
(location of the) discriminative, colored area. This check also implies that Reasoning-completeness is evaluated, but
then only on discriminatory feature level and not necessarily how the features are aggregated by the model.

An important prerequisite for the Controlled Synthetic Data Check is that it should be reasonable to assume that the
black box has learned the intended reasoning. Reporting the task accuracy of model 𝑓 or using other checks is good
practice to validate this assumption.

The correctness of real-valued feature importance scores and heatmaps is often evaluated by removing, perturbing
or masking features from the input and measuring how that affects the (confidence of the) output of predictive model 𝑓 .
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Table 3. Descriptions of automated, quantitative evaluation methods (i.e. without user study), with references to papers that apply
this method. The italic text lists the types of explanations that we found mainly related with an evaluation method.

Name, Description andMain Explanation Types References

CORRECTNESS (Section 6.1)

Model Parameter Randomization Check
Randomly perturb the internals of the predictive model and check that the explanation
changes.
Feature importance, Heatmap, Localization

[3, 148, 215, 236, 291]

Explanation Randomization Check
Randomly perturb the explanation (which is built into the predictive model) and check that
the output of the predictive model changes.
Feature importance, Heatmap

[169, 236]

White Box Check
Apply the explanation method to an interpretable white box model and check the correspon-
dence of the explanation with the white box reasoning.
Feature importance, Decision Rules, White-box model, Localization

[55, 115, 118, 138, 209,
212, 316]

Controlled Synthetic Data Check
Controlled experiment: Create a synthetic dataset such that the predictive model should follow
a particular reasoning, known a priori (important: checking this assumption by e.g. reporting
almost-perfect accuracy). Evaluate whether the explanation shows the same reasoning as the
data generation process.
Feature importance, Heatmap, Prototypes, Localization, White-box model, Graph

[3, 40, 74, 104, 110, 127,
154, 158, 160, 200, 203,
204, 216, 242, 247, 255,
265, 294]

Single Deletion
Delete, mask or perturb a single feature in the input and evaluate the change in output of the
predictive model. Measure correlation with explanation’s importance score.
Feature importance, Heatmap

[9, 19, 42, 49, 74, 184,
222, 223, 225, 307, 307]

Incremental Deletion (or Incremental Addition)
One by one delete (or perturb) or add features to the input, based on explanation’s order, and
measure for each new input the change in output of the predictive model. Report average
change in log-odds score, AUC, steepness of curve or number of features needed for a different
decision. Compare with random ranking or other baselines.
Feature importance, Heatmap

[26, 34, 38, 41, 71, 75, 80,
88, 90, 95, 102, 106, 110,
123, 131, 153, 157, 160,
169, 178, 187, 207, 209,
220, 225, 235, 266, 277,
285, 290, 291]

OUTPUT-COMPLETENESS (Section 6.2)

Preservation Check
Giving the explanation (or data based on the explanation) as input to the predictive model
should result in the same decision as for the original, full input sample.
Feature importance, Heatmap, Localization, Text, Prototypes

[23, 34, 40, 60, 87, 88,
122, 134, 147, 148, 159,
215, 276, 292, 297, 298]

Deletion Check
Giving input without explanation’s relevant features should result in a different decision by
the predictive model than the decision for the original, full input sample.
Feature importance, Heatmap, Localization

[60, 134, 148, 160, 202,
215]

Fidelity
Measure the agreement between the output of the predictive model and the explanation when
applied to input sample(s).
Feature importance, Heatmap, Decision Rules, Decision Tree, Prototypes, Text, Localization,
White-box model

[12, 15, 35, 42, 55, 58,
115, 122, 138, 144, 155,
195, 196, 198, 211, 253,
261, 282–284, 296, 307,
312, 316]

Predictive Performance
Predictive performance of the interpretable model or predictive explanation with respect to
the ground-truth data.
Feature importance, Heatmap, Decision Rules, Decision Tree, Prototypes, White-box model

[12, 42, 55, 78, 78, 92,
128, 139, 151, 195, 200,
201, 211, 213, 213, 232,
282, 290, 296, 307, 309]
i.a.
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Table 3. Continued

Name, Description andMain Explanation Types References

CONSISTENCY (Section 6.3)

Implementation Invariance
Evaluate whether the explanation method is invariant to specific implementations of the
predictive model by validating whether two implementations that give the same output for
an input, also get the same explanation. Only applies to explanation methods that do not
consider the internals of the black box but rather observe input and output.
Feature Importance

[69, 256]

CONTINUITY (Section 6.4)

Stability for Slight Variations
Measure the similarity between explanations for two slightly different samples. Small varia-
tions in the input, for which the model response is nearly identical, should not lead to large
changes in the explanation.
Feature importance, Heatmap, Graph, Text, Localization, Decision Rules, White-box model

[9, 28, 31, 53, 61, 79, 79,
95, 138, 147, 148, 198–
200, 205, 234, 245, 252,
262, 291]

Fidelity for Slight Variations
Measure the agreement between interpretable predictions for original and slightly different
samples: an explanation for original input 𝑥 should accurately predict the model’s output for
a slightly different sample 𝑥 ′.
Decision Rules, White-box model

[138, 199]

Connectedness
Measure how connected a counterfactual explanation is to samples in the training data: ideally,
the counterfactual is not an outlier, and there is a continuous path between a generated
counterfactual and a training sample.
Prototypes, Representation Synthesis

[121, 143, 194]

CONTRASTIVITY (Section 6.5)

Target Sensitivity
The explanation for a particular target or model output (e.g. class) should be different from
an explanation for another target.
Heatmap

[181, 202, 236, 242, 266,
270]

Target Discriminativeness
The explanation should be target-discriminative such that another model can predict the right
target (e.g. class label) from the explanation, in either a supervised or unsupervised fashion.
Disentanglement, Representation Synthesis, Text

[30, 72, 114, 131, 235,
261, 264, 277, 285]

Data Randomization Check
Randomly change labels in a copy of the training dataset, train a model on this randomized
dataset and check that the explanations for this model on a test set are different from the
explanations for the model trained on the original training data.
Feature importance, Heatmap, Localization

[3, 148, 215]

COVARIATE COMPLEXITY (Section 6.6)

Covariate Homogeneity
Evaluate how consistently a covariate (i.e. feature) in an explanation represents a predefined
human-interpretable concept.
Prototypes, Disentanglement, Localization, Heatmap, Representation Synthesis

[4, 24, 25, 66, 70, 72, 76,
89, 105, 123, 140, 156,
176, 228, 229, 235, 244,
254, 281, 293, 304, 306,
311, 313]

Covariate Regularity
Evaluate the regularity of an explanation by measuring its Shannon entropy, in order to
quantify how noisy the explanation is and how easy it is to memorize the explanation.
Decision Rules, Feature Importance

[256, 296]
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Table 3. Continued

Name, Description andMain Explanation Types References

COMPACTNESS (Section 6.7)

Size
Total size (absolute) or sparsity (relative) of the explanation.
Feature importance, Heatmap, Decision Rules, Decision Tree, Prototypes, Text, Graph, Localization,
White-box model, Representation Synthesis

[8, 33, 35, 55, 58, 78, 109,
124, 125, 130, 137, 139,
147, 169, 198–203, 211–
213, 218, 227, 244, 248,
252, 262, 271, 272, 276,
277, 282–284, 295, 305,
309]

Redundancy
Calculate the redundancy or overlap between parts of the explanation.
Feature importance, Decision Rules, Text, White-box model

[139, 144, 255]

Counterfactual Compactness
Given a counterfactual explanation showing what needs to be changed in the input in order
to change the prediction of the predictive model, measure how much needs to be changed.
Prototypes, Representation Synthesis, Text

[8, 84, 121, 124, 144,
194, 251, 308]

COMPOSITIONALITY (Section 6.8)

Perceptual Realism
Measure how realistic a generated explanation is compared to real, original samples.
Representation Synthesis, Text

[30, 66, 235]

CONFIDENCE (Section 6.9)

Confidence Accuracy
Measure the accuracy of confidence/uncertainty estimates in case these are present in the
explanation.
Feature Importance, Prototypes

[78, 220]

CONTEXT (Section 6.10)

Pragmatism
The cost or degree of difficulty for a user to act upon the suggestions by a counterfactual
explanation that explains what the user should change in order to attain a particular outcome
by the predictive model.
Decision Rules, Representation Synthesis

[194, 211]

Simulated User Study
Create a synthetic dataset such that the utility of explanations for user-relevant tasks can be
automatically evaluated.
Feature Importance, Localization

[212, 235]

COHERENCE (Section 6.11)

Alignment with Domain Knowledge
Compare the generated explanation with a ‘ground-truth’ expected explanation based on
domain knowledge.
Feature importance, Heatmap, Localization, Text, Disentanglement, Prototypes

[12, 18, 22–24, 30, 34,
37, 43, 45, 47, 48, 50,
54, 62, 64, 67, 71, 84, 94,
104, 107, 112, 114, 116–
118, 122, 145, 152, 153,
156, 164, 169, 178, 186,
190, 192, 193, 203, 205,
208, 215, 222, 223, 226,
235, 241, 243, 255–257,
262, 266, 268, 269, 276,
278, 286, 288, 300, 306]
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Table 3. Continued

Name, Description andMain Explanation Types References

XAI Methods Agreement
Quantitatively compare explanations from different XAI methods and evaluate their agree-
ment.
Feature importance, Heatmap, Localization

[10, 75, 90, 118, 163,
169, 178, 231, 273, 278]

CONTROLLABILITY (Section 6.12)

Human Feedback Impact
Measure the improvement of explanation quality after human feedback, where the user is
seen as a system component.
Interactive Explanation, Text

[47, 62]

The Single Deletion method evaluates the change in output when removing or perturbing one feature and compares
that with the explanation’s importance score. In a correct explanation, the explanation’s feature importance score
should be proportional to the shift in output distribution. In other words, the feature with the highest importance score
should also lead to the biggest change in output from 𝑓 , and features with a low importance should not result in a
significant change. The Single Deletion method also allows to check for specific properties, such as the “null attribute”
indicating that omitting a feature that has no effect on the output of the model, should have an importance score of
zero [135].

Features can also be removed one by one in an iterative, incremental fashion: Incremental Deletion. Given the
exponential number of possible subsets, features are often removed incrementally in either descending order (i.e. most
important feature first, then top-2 most important features, etc.) or ascending order (least important or most unimportant
first). Due to the high computational costs of iterative removal, some authors (e.g. [75, 90, 220]) do not evaluate output
of 𝑓 at each iteration, but only evaluate it for specific subsets, such as removing the top-k most influential and least
influential features. Authors using Incremental Deletion often refer to work of Shrikumar et al. [230] who calculate the
difference in log-odds scores by 𝑓 , and Samek et al. [219] who measure the Area over the Perturbation Curve when
perturbing a region in an image. Analyzing the area or steepness of a curve however assumes that the majority of the
importance is placed on only a few features. Although this is typically the case for softmax scores [225], there might be
cases where this assumption is invalid. It is therefore good practice to compare the curve with other baselines, such as a
random ranking. Instead of starting with the full input and incrementally removing features, some authors start with
an ‘empty’ input and incrementally add features: Incremental Addition (e.g. [285]).

Incremental Deletion/Addition can include the evaluation of output-completeness. Where correctness evaluates
whether the importance score value is correct, output-completeness evaluates whether the set of important features is
sufficient to explain the output of model 𝑓 . For example: an explanation showing one relevant pixel might be correct
but is probably not output-complete, and an explanation showing the full input image is output-complete but the
importance score of pixels is probably incorrect. Output-completeness is evaluated for Incremental Deletion at the
point where all important features are removed. An output-complete explanation should result in a wrong decision
by model 𝑓 when all features in the explanation are removed from the input. For Incremental Addition, the output
of the model when only the important features are present should be similar to the output for the full input (see also
Preservation Check and Deletion Check). Besides using Incremental Deletion/Addition to evaluate correctness and
output-completeness, compactness can be evaluated by counting how many features of the explanation need to be
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Table 4. Identified quantitative methods to evaluate explanations without user studies, related to their Co-12 properties. Bold
check mark indicates prominent Co-12 property. Superscript R and O indicate Reasoning-completeness and Output-completeness
respectively.
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Model Parameter Randomization Check ✓

Explanation Randomization Check ✓

White Box Check ✓ ✓R

Controlled Synthetic Data Check ✓ ✓R ✓

Single Deletion ✓

Incremental Deletion (or Incremental Addition) ✓ ✓O ✓

Preservation Check ✓O

Deletion Check ✓O

Fidelity ✓O

Predictive Performance ✓O

Implementation Invariance ✓

Stability for Slight Variations ✓

Fidelity for Slight Variations ✓O ✓

Connectedness ✓

Target Sensitivity ✓

Target Discriminativeness ✓

Data Randomization Check ✓

Covariate Homogeneity ✓ ✓

Covariate Regularity ✓

Size ✓

Redundancy ✓

Counterfactual Compactness ✓ ✓

Perceptual Realism ✓

Confidence Accuracy ✓ ✓O ✓

Pragmatism ✓ ✓ ✓

Simulated User Study ✓

Alignment with Domain Knowledge ✓ ✓

XAI Methods’ Agreement ✓

Human Feedback Impact ✓ ✓
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removed, perturbed or added in order to change the decision of the predictive model [8, 34, 71, 124, 169, 225]. The
motivation is that an explanation is easier to contemplate at once when this minimal set is small. Figure 9 visualizes the
evaluation curve for Incremental Deletion and the points on this curve where output-completeness and compactness
can be evaluated.

The criticism on Single Deletion and Incremental Deletion is that deletion of features, such as setting them to
zero, can lead to out-of-distribution samples [34, 102, 110]. A solution would be to train a new model on the modified
data. For example, Frye et al. [74] train separate classifiers for different feature subsets, and Hooker et al. [102] remove
the 𝑘% most important features and then retrain the predictive model. This however implies that the correctness
with respect to the original model is not evaluated. Chang et al. [34] solve the out-of-distribution issue by applying a
Generative Adversarial Network (GAN) to fill in deleted features, and Ismail et al. [110] replace masked features with
values from the original data distribution.

6.2 Functionally Evaluating Output-Completeness

The Preservation Check and Deletion Check, following terminology of [266], evaluate the output-completeness of
the explanation: i.e., does the explanation hold enough information to explain the output of model 𝑓 . Explanations
evaluated in this way are usually outcome explanations or model inspections. The methodology is similar to the
Incremental Deletion and Incremental Addition method, but instead of incrementally deleting features, the input is
given with or without the whole explanation. This visualizes a single point on the incremental deletion curve, as shown
in Figure 9. These checks are measured by calculating the change in accuracy or confidence of the predictive model
(hence, output-completeness). Ideally, the accuracy of 𝑓 for the Deletion Check should lead to a significant drop in
accuracy whereas the accuracy after the Preservation Check should stay similar. Nam et al. [178] note that a small
change in accuracy can be inevitable due to distortion of the input (such as color and shape in images) which can result
in unpredictable noise that affect the model’s output.

Fidelity measures the agreement between the output of predictive model 𝑓 and the explanation when applied to
the input, and therefore evaluates how well the explanations mimic the output of model 𝑓 [56, 86]. It can be applied
to model explanations and outcome explanations. Fidelity is often defined as the fraction of data samples for which

Number of masked features 
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Prediction
confidence/accuracy 

based on masked 
input

Random ranking

Explanation’s 
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Correctness

*
Output-
Completeness
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All important features 
(according to explanation) 

masked

Fig. 9. The evaluation curve for the Incremental Deletion method to evaluate correctness, output-completeness and compactness.
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predictive model 𝑓 and an explanation make the same decision, but can also be reported as approximation error by
calculating the average absolute difference or mean squared error (e.g. [12, 316]). Others use slight variations on
fidelity such as the Kullback–Leibler divergence between the outputs (e.g. [12, 35, 296]), conditional entropy [42],
correlation [309], likelihood comparison [58] or evaluating how adding explanations to the model would improve
prediction performance [253]. Le et al. [144] also introduced a metric called “influence” which combines fidelity with
information gain and compactness. We emphasize that fidelity is not evaluating correctness, although sometimes
presented as such. For example, Anders et al. [12] theoretically showed that for any classifier, one can always construct
another classifier that gives the same output as the original classifier for all data instances, but has arbitrarily manipulated
explanation maps.

When the explanation is a transparent box design (such as decision rules, decision tree or another white-box model),
predictive model 𝑓 equals explanation method 𝑒 . Hence, fidelity is not applicable for transparent boxes. Instead, the
Predictive Performance of the transparent box model with respect to the ground-truth task data can be evaluated,
such as classification accuracy. In case of 𝑓 ≠ 𝑒 , the predictive performance of 𝑓 is not directly related to the explanation
quality and therefore not included as explanation evaluation metric (although it is generally good practice to report
task accuracy and related metrics for evaluating 𝑓 , since this can influence the perceived coherence of the explanation).
However, some authors (e.g. [42, 92]) evaluate output-completeness by comparing the accuracy of their explanation
method with the accuracy of predictive model 𝑓 . The decrease in accuracy then quantifies output-completeness. Another
metric is coverage, which quantifies the fraction of samples to which the explanation applies. In case of outcome
explanations, a set of explanation can be generated for the training set, after which the coverage for this set is evaluated
on the test set. With decision rules for example, coverage would measure the fraction of instances that is classified by at
least one rule in the rule set [139, 213, 309].

6.3 Functionally Evaluating Consistency

Consistency evaluates whether identical inputs have identical explanations. In practice, this can address to what extent
the explanation method is deterministic. Determinism of an explanation method is usually a design choice and therefore
only (implicitly) qualitatively discussed. A quantitative method related to consistency is Implementation Invariance
which states that two models that give the same outputs for all inputs (regardless of their internal implementation)
should have the same explanations. Although definitions differ slightly between authors, Tseng et al. [256] evaluated
Implementation Invariance by computing the Jaccard similarity between feature importance scores across random
initializations of the predictive model. Fernando et al. [69] use a special version of Implementation Invariance by
specifically focusing on ‘reference inputs’ for the DeepSHAP explanation method. They explain that a plain black image
is a standard reference input to compute relative importance for image classification, and analyze the sensitivity of
explanations to different reference inputs for retrieval tasks.

6.4 Functionally Evaluating Continuity

Continuity addresses the generalizability of explanations and can be measured with the Stability for Slight Variations
method, which measures the similarity between explanations for an original input sample and a slightly different version
of this sample. Alvarez-Melis and Jaakkola [9], among others, introduced the term stability, but also sensitivity [148, 291]
and robustness [205, 234] are used. Most authors add a small amount of noise to an original input sample or otherwise
slightly perturb a sample. A few others evaluate stability between two original samples that are similar, e.g. by using
a local neighborhood criterion [198]. Similarity between explanations can be quantified with various metrics, often
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dependent on the type of explanation. Examples include rank order correlation [28, 79, 234, 262], top-k intersection [79],
cosine similarity [53], rule match [138], normalized distance [9] and the structural similarity index (SSIM) [61]. Nie et
al. [181] show however that one should always check whether the output of the predictive model stays the same for a
slightly perturbed input, before evaluating the similarity of explanations.

Instead of comparing the explanations, others evaluate the Fidelity for Slight Variations by comparing the
predictions of 𝑓 for original and slightly perturbed inputs. The reasoning is that an explanation, which should be a
predictive model such that 𝑒 = 𝑓 , for original input 𝑥 should accurately predict the model’s output for a slightly different
sample 𝑥 ′ [199]. Lakkaraju et al. [138] argue that explanations should have high fidelity on both the original input data
and on slightly shifted input to ensure robustness of the explanations.

Laugel et al. [143] and Pawelczyk et al. [194] evaluate their counterfactual explanations by calculating Connected-
ness. They argue that generated counterfactual samples should be “justified” [143], meaning that there is a continuous
path from the counterfactual to a sample in the ground-truth training data. Closely related is requiring that the
counterfactual explanation is in proximity of actual instances to prevent that the explanation is an outlier [121, 194].
Connectedness addresses the lack of robustness and unknown generalization ability of some predictive models. Requir-
ing connectedness would prevent generating counterfactual explanations that are based on artifacts which are correct
with respect to a model that is not robust, but not near an instance from the training data. The latter can be undesirable
for the Co-12 properties Context and Coherence.

6.5 Functionally Evaluating Contrastivity

Contrastivity addresses the discriminativeness of explanations with respect to a ground-truth label or other target.
Therefore the Target Sensitivity evaluation method captures “the intuition that class-specific features highlighted by
an explanation should differ between classes” [202]. Interestingly, we found that Target Sensitivity was only evaluated
for heatmaps. Sixt et al. [236] confirmed the relevance of this evaluation method by proving that some attribution
methods can converge to class-insensitive explanations. Moreover, Adebayo et al. [2] showed that visual inspection can
favor plausible heatmaps which are not target-sensitive to the underlying reasoning of the model. They illustrated
this by revealing the high similarity between edge detectors for image data and explanatory saliency maps. Ideally,
explanations are target-sensitive and should differ between targets and, in case of image data, should not be static edge
detectors [2, 181]. This can be checked by comparing explanations for different targets or output logits [181, 202, 236, 308]
or explanations before and after an adversarial attack [181, 242]. An adversarial attack fools the predictive model
𝑓 such that it makes a different prediction for a slightly perturbed input. A different prediction should then also
lead to a different explanation. Target Sensitivity can be measured with L1, L2 or Hamming distance between the
explanations [181, 202, 308], histogram intersection [242] or the structural similarity index measure (SSIM) between
two heatmaps [236]. In all these cases, a large difference between the explanations is desired. Wagner et al. [266] go a
step further and argue that explanations should be empty for targets for which there is no evidence in the input sample
(e.g. a class that is visually not present in an image). They generate an explanation for the least likely class and compute
the fraction of explanations that was not empty [266].

Another desirable property regarding contrastivity is high Target Discriminativeness, since that implies a good
“informativeness for a downstream prediction task” [72]. To evaluate the target-discriminativeness, either an external
classifier is trained on predicting the right target given the explanation [30, 114, 285], or a cluster method is applied on
the explanations [72, 277]. Explanations in these papers are often interpretable representations or text. The performance
of the classifier or clustering method is evaluated against ground-truth targets. Kindermans et al. [131] evaluate Target
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Discriminativeness slightly different by evaluating howmuch of the target can be reconstructed when the explanation
is removed from the input.

The Data Randomization Check, introduced by Adebayo et al. [2], is a sanity check for the “sensitivity of an
explanation method to the relationship between instances and labels”, and has the advantage that it is model-agnostic.
Ideally, explanations explain the mapping between input and output that the predictive model has learned. If a model
is successfully trained on a dataset with random labels, which has been shown to be possible with deep neural
networks [301], it has learned the data generation process by memorizing the random labels. The accuracy on an unseen
test set will never be better than random guessing [2]. Therefore, the explanation for a test sample from the model
trained on the randomized dataset should be different from the explanation from the model trained on the original
dataset, since the underlying data generation process, and hence the target, differs.

6.6 Functionally Evaluating Covariate Complexity

Covariate complexity is concerned with the use of human-understandable concepts to explain features (i.e. covariates)
and their interactions. It can be qualitatively addressed by motivating a design choice, such as using a bag of words
instead of uninterpretable word embeddings as covariates [212], applying element-wise feature mappings which are
claimed to be more interpretable [141] or selecting a predictive model that satisfies a monotonicity requirement [273].

A quantitative method to evaluate covariate complexity is measuring Covariate Homogeneity. Generally, this
implies evaluating how consistently a covariate represents a predefined human-interpretable concept. The exact
implementation mainly depends on the type of explanation and type of data.

Given an annotated dataset with predefined concepts (such as object parts), the Intersection over Union [24, 70,
123, 176, 244, 306] or distance [304] between learned covariates (e.g. prototypes) and interpretable concepts can be
calculated. Zheng et al. [313] evaluate the predictive power of their features for predicting human generated features,
and Fyshe et al. [76] measure the distance from their learned representations to a semantic ground-truth provided by
humans. In case of clusters, the purity of a cluster w.r.t. ground-truth labels can be measured [72, 140, 229, 311].

Homogeneity is also relevant for the explanation type ‘Disentanglement’. Such explanation methods aim to learn
a latent representation that is disentangled such that each dimension corresponds to an interpretable concept, after
which these representations can be used in downstream tasks. Covariate Homogeneity evaluates in this case the
extent to which each dimension corresponds to exactly one (interpretable) concept, factor or attribute. Examples of
such interpretable factors include color of an object in an image, or the presence of a smile on a face [66]. This can be
quantified by measuring the mutual information between a dimension and a concept [89]. Ideally, a dimension has high
mutual information with a single concept and zero mutual information with all other concepts. Others vary exactly
one dimension and keep all others fixed. Then, the output variance per concept can be measured [66], or the accuracy
of a classifier that should predict the index of the specific factor of variation (ceteris paribus) [89]. Another approach,
originally suggested by [129], is to generate data while keeping exactly one covariate fixed and varying the others, and
evaluate whether the variance in one dimension is exactly zero [25, 156].

Another method is a specific metric to evaluate the Covariate Regularity of explanations. Yu and Varshney [296]
argue that a decision rule is easier to memorize if it is less entropic and therefore measure the Shannon entropy of a
rule’s feature distribution. Tseng et al. [256] measure the Shannon entropy of feature importance scores in order to
indicate how noisy the feature attributions are.
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6.7 Functionally Evaluating Compactness

Many authors have evaluated the compactness of their explanations by measuring their Size (absolute) or sparsity
(relative), since explanation should not overwhelm a user. The implemented metric usually depends on the type of data
and type of explanation. Examples include: the number of features in an explanation (e.g. [55, 109, 199, 212, 227, 271]),
average path length in a decision tree (e.g. [137, 283, 284]), reduction w.r.t. complete data sample (e.g. [8, 33, 109]), or
the number of decision rules in a set (e.g. [139, 147, 211, 227, 272, 309]). Additionally, some evaluate the Redundancy
of their explanations. A lower overlap of information within the explanation would signify higher interpretability.
Redundancy can be measured with information gain [144], or the overlap ratio [139, 255].

In case of counterfactual explanations, compactness can be evaluated by measuring Counterfactual Compactness.
A counterfactual explanation, usually an outcome explanation, shows what should change in the input in order to change
the corresponding prediction of model 𝑓 , and therefore also addresses Contrastivity. Counterfactual Compactness
quantifies how much needs to be changed for a different outcome. Generally, as little changes as possible are desired,
to generate a compact counterfactual explanation. Counterfactual Compactness can be quantified by measuring the
distance between the input and counterfactual explanation [121, 124] or the number of transformations that are
required [84, 144] such as the number of features that need to be changed. Note that a counterfactual explanation with
a distance of 0 implies that the contrastivity (and specifically the target sensitivity) is also 0: apparently nothing needs
to be changed in the explanation for a different prediction.

6.8 Functionally Evaluating Compositionality

The Co-12 property Compositionality describes the format and organization of an explanation and focuses on how

something is explained. Compositionality is often qualitatively discussed by claiming that the predictive model has an
interpretable architecture, or by showing anecdotal evidence, for example by concluding that introduced heatmaps
are “the most crisp” [131], or by making specific design choices such as considering the colors used in explanations to
make them easier to analyze [83]. Compositionality can also be evaluated with users, as shown in Table 5. We identified
one functionally-grounded quantitative evaluation method which we term Perceptual Realism. Perceptual Realism
for images can be evaluated by using Fréchet Inception Distance (FID) scores [98] to evaluate the quality of generated
images. FID measures the similarity between generated images and real, original images and has been shown to be
consistent with human judgment [98]. FID scores are generally used to evaluate Representation Synthesis explanations
generated by GANs [66, 235]. For textual explanations, compositionality is in most cases indirectly evaluated by
measuring standard metrics such as BLEU [189] and ROUGE [149] with respect to a ground-truth explanation (as
incorporated in the ‘Alignment with Domain Knowledge’ evaluation method). However, the perplexity metric as used
in e.g. [30] does not need a reference input and therefore evaluates the quality of a text in a similar fashion as the FID
scores for images.

6.9 Functionally Evaluating Confidence

To check whether the explanation contains probability or uncertainty information, authors usually make a design
choice whether their XAI method will contain a confidence measure regarding the output of model 𝑓 or the likelihood
of the explanation. Only two papers in our set of included papers explicitly evaluated their confidence information.
Schwab and Karlen [220] introduce a feature importance method that produces uncertainty estimates. They assess
the Confidence Accuracy of the uncertainty estimates by measuring their correlation with ground-truth changes in
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outputs when masking features in held-out test samples. As additional baseline, they compare with random uncertainty
estimates. Ghalwash et al. [78] evaluate their uncertainty estimates for time series classification by analyzing the
correlation between uncertainty thresholds and the model’s accuracy, and additionally evaluate how the uncertainty
evolves over time.

6.10 Functionally Evaluating Context

The Co-12 property Context takes the user and their needs into account. Naturally, this is evaluated with user studies, as
shown in Table 5. However, we identified two quantitative evaluation methods where user studies are not necessary. The
first method is Pragmatism, which quantifies, based on domain knowledge, the degree of difficulty for an individual to
act upon the suggestions in a counterfactual explanation [194, 211]. The underlying intuition is that there might exist
various counterfactual explanations that show what should be changed in order to get a different prediction from model
𝑓 . Whereas the Counterfactual Compactness method evaluates the compactness of this counterfactual with respect to
the original input, the Pragmatism method also takes the user’s context into account. A cost per feature quantifies the
degree of difficulty for a user to change that feature. This cost can also be infinite: e.g., a person cannot get younger so
a counterfactual explanation showing that the user should decrease their age is not actionable and hence not pragmatic.
In addition to the cost per feature, also the degree or cost of a feature change could be taken into account, related to
Compactness. Rawal and Lakkaraju [211] explain that it is probably easier for a user to increase income by 5K than 50K.

The second method involves Simulated User Studies. Ribeiro et al. [212] perform two experiments to evaluate
whether users would 1) trust predictions and 2) be able to use explanations as model selection method. In their first
experiment, they define some input features as being “untrustworthy” and assume that end users do not want such
features to be used by the predictive model. They evaluate whether the prediction changes when all untrustworthy
features are removed from the explanation. Their second experiment trains two predictive models that have a similar
validation accuracy but one performs worse on the test set. They evaluate whether their explanation method can be
used to identify the better model by revealing artificially introduced spurious correlations. Singla et al. [235] evaluate in
a similar manner the performance of their explanation method in identifying biases in data.

6.11 Functionally Evaluating Coherence

To quantitatively evaluate whether explanations generated by an XAI method align with domain knowledge, general
beliefs and consensus, they are often compared with some expected explanations framed as ‘ground-truth’, which we
call Alignment with Domain Knowledge. This ground-truth is contained in an annotated dataset. For imaging data,
often ‘location coherence’ is evaluated by comparing a heatmap or localization explanation with ground-truth object
bounding boxes, segmentation masks, landmarks or human attention maps. Correspondence between the ground-truth
and the explanation can then be quantified with the Intersection over Union (e.g. [24, 34, 64, 71, 178, 269, 300]), outside-
inside relevance ratio (e.g. [178]), point localization error (e.g. [107, 112, 300]), pointing game accuracy (whether a
point falls into a ground-truth region, e.g. [64, 107]) or rank correlation with human attention maps [192, 193]. For
textual explanations, standard natural language generation metrics such as ROUGE [149] and BLEU [189] are often
used to evaluate the overlap of the generated explanations with a ground-truth text, e.g. [18, 30, 47, 48, 54, 62, 145,
152, 190, 208, 243, 278]. Indirectly, these metrics also evaluate compositionality since it has been shown that ROUGE
and BLEU correlate with human judgments on fluency of a text [68]. For real-valued explanations such as feature
importance, one could measure (rank) correlation between the generated explanation and ground-truth annotation in
the dataset (e.g. [10, 12, 22, 114, 118, 118, 169, 192, 193, 223, 226, 255, 256]). We would like to highlight that some common
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correlation metrics were criticized, such as Kendall’s tau which could be misleading at the tail end of distributions [169]
and Spearman correlation has limitations for global rankings [83].

As alternative to evaluating the Alignment with Domain Knowledge, for example when a ground-truth is not
available, one could evaluate coherence by calculating the XAI Methods Agreement. Existing XAI methods, which
are already established within the community and/or proven to adhere to certain desirable properties, are then usually
considered as ground-truth, and those explanations are compared with the explanations from other methods.

For both Alignment with Domain Knowledge and XAI Methods Agreement, we would like to emphasize that
these methods only evaluate Coherence with respect to expectations, and not Correctness with respect to the predictive
model 𝑓 . Hence, a coherent explanation could be incorrect and vice versa. For example, an explanation highlighting
snow in the background to distinguish between a husky and a wolf (example from Ribeiro et al. [212]), would score low
on location coherence w.r.t. object segmentation masks, but is correctly showing the reasoning of this bad classifier. It
is therefore good practice to evaluate multiple Co-12 properties and specifically evaluate correctness and coherence
independently, as also argued by Jacovi and Goldberg [111].

6.12 Functionally Evaluating Controllability

Controllability addresses the interactivity of explanations, which is applicable to e.g. conversational explanation
methods [47, 174], interactive interfaces [218, 255], human-in-the-loop explanation learning methods (e.g. as [62]) or
methods that enable the user to correct explanations [274]. We note that XAI methods can also have (hyper)parameters
to tune the explanations, such as a regularizer for explanation size, but we do not consider such parameters as being
evaluation methods for Controllability. The evaluation of Controllability is usually qualitative by discussing why the
controllable format improves the quality of the explanations, or by only showing an example of the Controllability.
We identified two papers that quantified Controllability by measuring the improvement of explanation quality after
human feedback: Human Feedback Impact. Chen et al. [47] and Dong et al. [62] measure the accuracy of their
textual explanations after iterative user feedback. Although users are involved in this evaluation method, it is not a
standard user study since the user is seen as a system component: the XAI methods use optimization criteria that require
humans-in-the-loop for optimal output. Additionally, Chen et al. [47] define the “Concept-level feedback Satisfaction
Ratio” which measures whether concepts for which a user has indicated to be interested in are present in the explanation,
and whether concepts where the user is not interested in are removed from the explanation. This Satisfaction Ratio
does not require direct user feedback, and could also be applied to an existing dataset with user interests.

6.13 Quantitative Evaluation with User Studies

Table 5 summarizes the main quantitative evaluation methods we identified that were applied in user studies. Generally,
we can distinguish between subjective evaluation and objective evaluation. The subjective methods usually evaluate
Coherence by measuring how a user perceives an explanation. In contrast, the Forward Simulatability, Teaching Ability,
Intruder Detection and Synthetic Artifact Rediscovery are objective evaluation methods. The Forward Simulatability
method is comparable to the functionally-grounded Preservation Check: instead of evaluating whether the predictive
model gives the right output given the explanation, the user acts as a surrogate model to evaluate whether the explanation
is output-complete for a user. The Teaching Ability is a related approach but also evaluates whether the explanations
are generalizable such that a user can, after being trained with explanations, make a correct prediction without having
an explanation. We refer to other work (e.g. [52, 100, 136]) for a more detailed discussion on evaluation with human
subjects.
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Table 5. Descriptions of quantitative evaluation methods with user studies, with references to papers that apply this method. Bold
check mark indicates prominent Co-12 property.
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Forward Simulatability
Given an explanation (and possibly the corresponding input sample), ask users to guess
or identify the model’s prediction (human-output-completeness). Additionally, the user’s
prediction speed can be measured, or the difference in simulation accuracy between whether
or not explanations are shown.
[7, 13, 18, 38, 40, 41, 93, 99, 125, 126, 137, 139, 148, 161, 168, 185, 205, 208–210, 213, 268, 271,
282]

✓ ✓ ✓ ✓ ✓

Teaching Ability
Train users with explanations to understand the model’s reasoning, after which humans
should predict the ground-truth for a new data instance without having an explanation.
Additionally, the user’s prediction speed can be measured.
[84, 269]

✓ ✓ ✓

Subjective Satisfaction
Ask users to rate explanations on properties such as satisfaction, reasonableness, usefulness,
fluency, relevance, sufficiency and trust.
[3, 7, 24, 47, 48, 60, 77, 93, 118, 126, 134, 145, 161, 165, 185, 204, 210, 212, 222, 223, 248, 251,
265, 267, 276, 310, 315]

✓ ✓ ✓ ✓ ✓

Subjective Comparison
Show users explanations from different XAI methods (or explanations from humans) and
evaluate which method is perceived as being better (in terms of e.g. perceived accuracy,
usefulness or understandability).
[18, 37, 46, 80, 113, 152, 169, 190, 231, 248, 265, 277]

✓ ✓ ✓ ✓

Perceived Homogeneity
Ask users to evaluate the purity or disentanglement of explanations, by e.g. verifying that a
dimension corresponds to a single interpretable factor.
[229, 264, 304, 311]

✓ ✓

Intruder Detection
Given an explanatory prototype or disentangled concept, show users a set of instances of
which one is an intruder, and ask which instance does not correspond with the explanation.
[80, 188, 240]

✓ ✓

Synthetic Artifact Rediscovery
A controlled experiment where a property of the predictive model is changed, after which it
is evaluated whether humans can reveal this property with the help of explanations.
[211, 212, 234, 247]

✓ ✓
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7 IMPLICATIONS AND RESEARCH OPPORTUNITIES

We strongly believe that explainable AI has great potential: XAI can justify algorithmic decisions, XAI can allow users
to control and improve systems by identifying and correcting errors, and XAI can contribute to knowledge discovery by
revealing learned patterns [1]. However, to reach this full potential, XAI methods should be extensively validated
in order to ensure that they are reliable and useful. Our analysis has shown that the field has been maturing the last
few years, but at the same time we also see that explainability is still often presented as a binary property. We argue
that explainability is a multi-faceted concept and make this explicit with our Co-12 properties describing different
conceptual aspects of explanation quality. Instead of evaluating only one property, it is essential to get insight into,
and preferably quantify, all properties such that an informed trade-off can be made. “Best is not directly a judgment of
truth but instead a summary judgment of accessible explanatory virtues” [119]. In practice, such a multi-dimensional
overview could be implemented as a radar chart or as a set of consumer labels as proposed by Seifert et al. [221] that
comprehensively and concisely conveys the strengths and weaknesses of the explanation or explanation method. Our
collection of identified evaluation methods also shows that quantitative evaluation methods exist for each of the
Co-12 properties. On the other hand, our analysis reveals that the majority of XAI evaluation focused on evaluating
Coherence, Completeness, Compactness or Correctness.We hope that our collection of evaluationmethods will stimulate
and facilitate a more complete and inclusive evaluation in order to objectively validate and compare new and
existing XAI methods. Eventually, we are convinced that XAI methods should be kept to minimal standards, similarly as
such standards exist for predictive models. Our overview of evaluation methods provides researchers and practitioners
with concrete tools to evaluate every Co-12 property while using unified terminology, and therefore contributes to
standardization. We also see a research opportunity to develop new evaluation methods for Co-12 properties that are
currently insufficiently addressed, and to develop variants on existing evaluation methods to make them suited for
different types of data and explanations.

Besides, we acknowledge that it might be unreasonable to expect an XAI method to score well on all Co-12 properties.
In practice, trade-offs between desired explanation properties will have to be made when developing an XAI
method. Coherence might contradict with Correctness, as discussed in Section 2.1, and Completeness and Compactness
might be considered diametrical opposites. The application domain or practical feasibility can determine which Co-12
properties should be emphasized. Herman [96] proposes to optimize explanations for content-related properties first
(correctness and completeness in particular), without making effort to simplify the explanation. “This separation of
concern encourages more rapid innovation and reduces the cost of evaluation” [96]. Subsequently, a second step can
consist of altering the explanation to “incorporate human cognitive function, user preferences, and expertise into
the explanation” [96]. Eventually, any trade-off can be made as long as it is sufficiently motivated. Insights from
other research areas, such as social sciences, psychology and HCI, can also provide the XAI community with more
guidance regarding what aspects of an explanation are important to evaluate. Combining strengths in multi-disciplinary
collaborations can subsequently result in innovative XAI evaluation methods.

Additionally, we think that our collected set of evaluation methods can not only be used for thorough evaluation, but
also for multi-dimensional optimization of interpretability. Some papers already optimize for interpretability by
using a regularization term or objective function during training of the predictive model (e.g. [33, 139, 198, 216, 249,
283, 284, 296]) or by relating rewards to explainability and presentation quality in reinforcement learning (e.g. [276]).
However, in practice these interpretability optimizers usually involve only one to two Co-12 properties. Interestingly,
some interpretability regularizers are not (yet) used as evaluation metric although their quantitative nature would make
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them suited to be used as XAI evaluation method as well. For example, Park et al. [191] optimize for interpretability
with spatial auto-correlation, which we have not seen as evaluation metric but might be suited for evaluating heatmaps.
This shows that the optimization and quantitative evaluation of explanation methods are closely related. We recognize
a research opportunity to study how evaluation methods can be incorporated in the training process of predictive
models, in order to tune the so-called “accuracy-interpretability trade-off” during training instead of only analyzing it
afterwards. Also the quantitative evaluation methods where user involvement is required can be used for optimizing an
interpretable model by adopting a human-in-the-loop approach (as done in e.g. [47, 137]).

Lastly, we believe that our annotated dataset containing the categorization of 312 XAI papers (such as type of data
and type of explanation, as shown in Fig. 2) is a rich source of information and can be a useful starting point for more
in-depth research. Our dataset is therefore publicly available at https://utwente-dmb.github.io/xai-papers/, such
that others can efficiently collect XAI papers that adhere to specific criteria such that subtopics can be analyzed in more
detail.

8 ACKNOWLEDGMENTS

We would like to thank Ziekenhuis Groep Twente (ZGT) for supporting this project, and Marion Koelle for the useful
suggestions to improve the structure of this work.

REFERENCES
[1] A. Adadi and M. Berrada. Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI). IEEE Access, 6:52138–52160, 2018.
[2] Julius Adebayo, Justin Gilmer, Michael Muelly, Ian Goodfellow, Moritz Hardt, and Been Kim. Sanity checks for saliency maps. In S. Bengio,

H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 31.
Curran Associates, Inc., 2018.

[3] Julius Adebayo, Michael Muelly, Ilaria Liccardi, and Been Kim. Debugging tests for model explanations. In Hugo Larochelle, Marc’Aurelio Ranzato,
Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Advances in Neural Information Processing Systems 33: Annual Conference on
Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

[4] Tameem Adel, Zoubin Ghahramani, and Adrian Weller. Discovering interpretable representations for both deep generative and discriminative
models. In Jennifer G. Dy and Andreas Krause, editors, Proceedings of the 35th International Conference on Machine Learning, ICML 2018,
Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine Learning Research, pages 50–59. PMLR, 2018.

[5] Philip Adler, Casey Falk, Sorelle A Friedler, Tionney Nix, Gabriel Rybeck, Carlos Scheidegger, Brandon Smith, and Suresh Venkatasubramanian.
Auditing black-box models for indirect influence. Knowledge and Information Systems, 54(1):95–122, 2018.

[6] Zeynep Akata, Dan Balliet, Maarten de Rijke, Frank Dignum, Virginia Dignum, Guszti Eiben, Antske Fokkens, Davide Grossi, Koen Hindriks,
Holger Hoos, Hayley Hung, Catholijn Jonker, Christof Monz, Mark Neerincx, Frans Oliehoek, Henry Prakken, Stefan Schlobach, Linda van der
Gaag, Frank van Harmelen, Herke van Hoof, Birna van Riemsdijk, Aimee van Wynsberghe, Rineke Verbrugge, Bart Verheij, Piek Vossen, and Max
Welling. A research agenda for hybrid intelligence: Augmenting human intellect with collaborative, adaptive, responsible, and explainable artificial
intelligence. Computer, 53(8):18–28, 2020.

[7] Arjun R. Akula, Shuai Wang, and Song-Chun Zhu. Cocox: Generating conceptual and counterfactual explanations via fault-lines. In The Thirty-
Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020,
The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pages 2594–2601.
AAAI Press, 2020.

[8] Emanuele Albini, Antonio Rago, Pietro Baroni, and Francesca Toni. Relation-based counterfactual explanations for bayesian network classifiers.
In Christian Bessiere, editor, Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI 2020, pages 451–457.
ijcai.org, 2020.

[9] David Alvarez-Melis and Tommi S. Jaakkola. Towards robust interpretability with self-explaining neural networks. In Samy Bengio, Hanna M.
Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett, editors, Advances in Neural Information Processing Systems
31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pages 7786–7795, 2018.

[10] Marco Ancona, Cengiz Öztireli, and Markus H. Gross. Explaining deep neural networks with a polynomial time algorithm for shapley value
approximation. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th International Conference on Machine Learning,
ICML 2019, 9-15 June 2019, Long Beach, California, USA, volume 97 of Proceedings of Machine Learning Research, pages 272–281. PMLR, 2019.

https://utwente-dmb.github.io/xai-papers/


A Systematic Review on Evaluating Explainable AI 35

[11] Marco Ancona, Cengiz Öztireli, Enea Ceolini, and Markus Gross. A unified view of gradient-based attribution methods for Deep Neural Networks.
NIPS, page 11, 2017.

[12] Christopher J. Anders, Plamen Pasliev, Ann-Kathrin Dombrowski, Klaus-Robert Müller, and Pan Kessel. Fairwashing explanations with off-manifold
detergent. In Proceedings of the 37th International Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of
Proceedings of Machine Learning Research, pages 314–323. PMLR, 2020.

[13] Andrew Anderson, Jonathan Dodge, Amrita Sadarangani, Zoe Juozapaitis, Evan Newman, Jed Irvine, Souti Chattopadhyay, Alan Fern, and Margaret
Burnett. Explaining reinforcement learning to mere mortals: An empirical study. In Sarit Kraus, editor, Proceedings of the Twenty-Eighth International
Joint Conference on Artificial Intelligence, IJCAI 2019, Macao, China, August 10-16, 2019, pages 1328–1334. ijcai.org, 2019.

[14] Robert Andrews, Joachim Diederich, and Alan B Tickle. Survey and critique of techniques for extracting rules from trained artificial neural
networks. page 17, 1995.

[15] Raghuram Mandyam Annasamy and Katia P. Sycara. Towards better interpretability in deep q-networks. In The Thirty-Third AAAI Conference on
Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium
on Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019, pages 4561–4569. AAAI Press,
2019.

[16] Vijay Arya, Rachel KE Bellamy, Pin-Yu Chen, Amit Dhurandhar, Michael Hind, Samuel C Hoffman, Stephanie Houde, Q Vera Liao, Ronny Luss,
Aleksandra Mojsilović, et al. One explanation does not fit all: A toolkit and taxonomy of ai explainability techniques. arXiv preprint arXiv:1909.03012,
2019.

[17] Pepa Atanasova, Jakob Grue Simonsen, Christina Lioma, and Isabelle Augenstein. A diagnostic study of explainability techniques for text
classification. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 3256–3274, Online,
November 2020. Association for Computational Linguistics.

[18] Pepa Atanasova, Jakob Grue Simonsen, Christina Lioma, and Isabelle Augenstein. Generating fact checking explanations. In Dan Jurafsky, Joyce
Chai, Natalie Schluter, and Joel R. Tetreault, editors, Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, ACL
2020, Online, July 5-10, 2020, pages 7352–7364. Association for Computational Linguistics, 2020.

[19] Kumar Ayush, Burak Uzkent, Marshall Burke, David B. Lobell, and Stefano Ermon. Generating interpretable poverty maps using object detection
in satellite images. In Christian Bessiere, editor, Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI 2020,
pages 4410–4416. ijcai.org, 2020.

[20] Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen, Klaus-Robert Müller, and Wojciech Samek. On pixel-wise explanations
for non-linear classifier decisions by layer-wise relevance propagation. PLOS ONE, 10(7):1–46, 07 2015.

[21] Alejandro Barredo Arrieta, Natalia Díaz-Rodríguez, Javier Del Ser, Adrien Bennetot, Siham Tabik, Alberto Barbado, Salvador Garcia, Sergio
Gil-Lopez, Daniel Molina, Richard Benjamins, Raja Chatila, and Francisco Herrera. Explainable Artificial Intelligence (XAI): Concepts, taxonomies,
opportunities and challenges toward responsible AI. Information Fusion, 58:82–115, June 2020.

[22] Cher Bass, Mariana da Silva, Carole H. Sudre, Petru-Daniel Tudosiu, Stephen M. Smith, and Emma C. Robinson. ICAM: interpretable classification
via disentangled representations and feature attribution mapping. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan,
and Hsuan-Tien Lin, editors, Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems
2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

[23] Jasmijn Bastings, Wilker Aziz, and Ivan Titov. Interpretable neural predictions with differentiable binary variables. In Anna Korhonen, David R.
Traum, and Lluís Màrquez, editors, Proceedings of the 57th Conference of the Association for Computational Linguistics, ACL 2019, Florence, Italy, July
28- August 2, 2019, Volume 1: Long Papers, pages 2963–2977. Association for Computational Linguistics, 2019.

[24] David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and Antonio Torralba. Network dissection: Quantifying interpretability of deep visual
representations. In 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017, pages
3319–3327. IEEE Computer Society, 2017.

[25] Ege Beyazit, Doruk Tuncel, Xu Yuan, Nian-Feng Tzeng, and Xindong Wu. Learning interpretable representations with informative entanglements.
In Christian Bessiere, editor, Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI 2020, pages 1970–1976.
ijcai.org, 2020.

[26] Umang Bhatt, Adrian Weller, and José M. F. Moura. Evaluating and aggregating feature-based model explanations. In Christian Bessiere, editor,
Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI 2020, pages 3016–3022. ijcai.org, 2020.

[27] Or Biran and Courtenay Cotton. Explanation and justification in machine learning: A survey. In IJCAI-17 workshop on explainable AI (XAI),
volume 8, pages 8–13, 2017.

[28] Akhilan Boopathy, Sijia Liu, Gaoyuan Zhang, Cynthia Liu, Pin-Yu Chen, Shiyu Chang, and Luca Daniel. Proper network interpretability helps
adversarial robustness in classification. In Proceedings of the 37th International Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual
Event, volume 119 of Proceedings of Machine Learning Research, pages 1014–1023. PMLR, 2020.

[29] Nadia Burkart and Marco F Huber. A survey on the explainability of supervised machine learning. Journal of Artificial Intelligence Research,
70:245–317, 2021.

[30] Oana-Maria Camburu, Tim Rocktäschel, Thomas Lukasiewicz, and Phil Blunsom. e-snli: Natural language inference with natural language
explanations. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett, editors, Advances
in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018,



36 Nauta et al.

Montréal, Canada, pages 9560–9572, 2018.
[31] Oana-Maria Camburu, Brendan Shillingford, Pasquale Minervini, Thomas Lukasiewicz, and Phil Blunsom. Make up your mind! adversarial

generation of inconsistent natural language explanations. In Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel R. Tetreault, editors, Proceedings
of the 58th Annual Meeting of the Association for Computational Linguistics, ACL 2020, Online, July 5-10, 2020, pages 4157–4165. Association for
Computational Linguistics, 2020.

[32] Diogo V. Carvalho, Eduardo M. Pereira, and Jaime S. Cardoso. Machine Learning Interpretability: A Survey on Methods and Metrics. Electronics,
8(8):832, August 2019. Number: 8 Publisher: Multidisciplinary Digital Publishing Institute.

[33] Prasad Chalasani, Jiefeng Chen, Amrita Roy Chowdhury, Xi Wu, and Somesh Jha. Concise explanations of neural networks using adversarial
training. In Proceedings of the 37th International Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings
of Machine Learning Research, pages 1383–1391. PMLR, 2020.

[34] Chun-Hao Chang, Elliot Creager, Anna Goldenberg, and David Duvenaud. Explaining image classifiers by counterfactual generation. In 7th
International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019.

[35] Chao Chen, Yifei Liu, Xi Zhang, and Sihong Xie. Scalable explanation of inferences on large graphs. In Jianyong Wang, Kyuseok Shim, and Xindong
Wu, editors, 2019 IEEE International Conference on Data Mining, ICDM 2019, Beijing, China, November 8-11, 2019, pages 982–987. IEEE, 2019.

[36] Chaofan Chen, Oscar Li, Daniel Tao, Alina Barnett, Cynthia Rudin, and Jonathan Su. This looks like that: Deep learning for interpretable image
recognition. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett, editors, Advances
in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019,
Vancouver, BC, Canada, pages 8928–8939, 2019.

[37] Chong Chen, Min Zhang, Yiqun Liu, and Shaoping Ma. Neural attentional rating regression with review-level explanations. In Pierre-Antoine
Champin, Fabien Gandon, Mounia Lalmas, and Panagiotis G. Ipeirotis, editors, Proceedings of the 2018 World Wide Web Conference on World Wide
Web, WWW 2018, Lyon, France, April 23-27, 2018, pages 1583–1592. ACM, 2018.

[38] Hanjie Chen, Guangtao Zheng, and Yangfeng Ji. Generating hierarchical explanations on text classification via feature interaction detection. In
Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel R. Tetreault, editors, Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics, ACL 2020, Online, July 5-10, 2020, pages 5578–5593. Association for Computational Linguistics, 2020.

[39] Jianbo Chen and Michael I. Jordan. Ls-tree: Model interpretation when the data are linguistic. In The Thirty-Fourth AAAI Conference on Artificial
Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on
Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pages 3454–3461. AAAI Press, 2020.

[40] Jianbo Chen, Le Song, Martin J. Wainwright, and Michael I. Jordan. Learning to explain: An information-theoretic perspective on model
interpretation. In Jennifer G. Dy and Andreas Krause, editors, Proceedings of the 35th International Conference on Machine Learning, ICML 2018,
Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine Learning Research, pages 882–891. PMLR, 2018.

[41] Jianbo Chen, Le Song, Martin J. Wainwright, and Michael I. Jordan. L-shapley and c-shapley: Efficient model interpretation for structured data. In
7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019.

[42] Runjin Chen, Hao Chen, Ge Huang, Jie Ren, and Quanshi Zhang. Explaining neural networks semantically and quantitatively. In 2019 IEEE/CVF
International Conference on Computer Vision, ICCV 2019, Seoul, Korea (South), October 27 - November 2, 2019, pages 9186–9195. IEEE, 2019.

[43] Tong Chen, Hongzhi Yin, Guanhua Ye, Zi Huang, Yang Wang, and Meng Wang. Try this instead: Personalized and interpretable substitute
recommendation. In Jimmy Huang, Yi Chang, Xueqi Cheng, Jaap Kamps, Vanessa Murdock, Ji-Rong Wen, and Yiqun Liu, editors, Proceedings of the
43rd International ACM SIGIR conference on research and development in Information Retrieval, SIGIR 2020, Virtual Event, China, July 25-30, 2020,
pages 891–900. ACM, 2020.

[44] Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel. Infogan: Interpretable representation learning by information
maximizing generative adversarial nets. In Daniel D. Lee, Masashi Sugiyama, Ulrike von Luxburg, Isabelle Guyon, and Roman Garnett, editors,
Advances in Neural Information Processing Systems 29: Annual Conference on Neural Information Processing Systems 2016, December 5-10, 2016,
Barcelona, Spain, pages 2172–2180, 2016.

[45] Xu Chen, Hanxiong Chen, Hongteng Xu, Yongfeng Zhang, Yixin Cao, Zheng Qin, and Hongyuan Zha. Personalized fashion recommendation
with visual explanations based on multimodal attention network: Towards visually explainable recommendation. In Benjamin Piwowarski, Max
Chevalier, Éric Gaussier, Yoelle Maarek, Jian-Yun Nie, and Falk Scholer, editors, Proceedings of the 42nd International ACM SIGIR Conference on
Research and Development in Information Retrieval, SIGIR 2019, Paris, France, July 21-25, 2019, pages 765–774. ACM, 2019.

[46] Xu Chen, Yongfeng Zhang, and Zheng Qin. Dynamic explainable recommendation based on neural attentive models. In The Thirty-Third AAAI
Conference on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artificial Intelligence Conference, IAAI 2019, The Ninth
AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019, pages 53–60.
AAAI Press, 2019.

[47] Zhongxia Chen, Xiting Wang, Xing Xie, Mehul Parsana, Akshay Soni, Xiang Ao, and Enhong Chen. Towards explainable conversational
recommendation. In Christian Bessiere, editor, Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI 2020,
pages 2994–3000. ijcai.org, 2020.

[48] Zhongxia Chen, Xiting Wang, Xing Xie, Tong Wu, Guoqing Bu, Yining Wang, and Enhong Chen. Co-attentive multi-task learning for explainable
recommendation. In Sarit Kraus, editor, Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI 2019, Macao,
China, August 10-16, 2019, pages 2137–2143. ijcai.org, 2019.



A Systematic Review on Evaluating Explainable AI 37

[49] Weiyu Cheng, Yanyan Shen, Linpeng Huang, and Yanmin Zhu. Incorporating interpretability into latent factor models via fast influence analysis.
In Ankur Teredesai, Vipin Kumar, Ying Li, Rómer Rosales, Evimaria Terzi, and George Karypis, editors, Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, KDD 2019, Anchorage, AK, USA, August 4-8, 2019, pages 885–893. ACM, 2019.

[50] Xu Cheng, Zhefan Rao, Yilan Chen, and Quanshi Zhang. Explaining knowledge distillation by quantifying the knowledge. In 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020, pages 12922–12932. IEEE, 2020.

[51] Davide Chicco, Matthijs J. Warrens, and Giuseppe Jurman. The matthews correlation coefficient (mcc) is more informative than cohen’s kappa and
brier score in binary classification assessment. IEEE Access, 9:78368–78381, 2021.

[52] Michael Chromik and Martin Schuessler. A Taxonomy for Human Subject Evaluation of Black-Box Explanations in XAI. page 7, 2020.
[53] Lingyang Chu, Xia Hu, Juhua Hu, Lanjun Wang, and Jian Pei. Exact and consistent interpretation for piecewise linear neural networks: A closed

form solution. In Yike Guo and Faisal Farooq, editors, Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, KDD 2018, London, UK, August 19-23, 2018, pages 1244–1253. ACM, 2018.

[54] Ching-Yao Chuang, Jiaman Li, Antonio Torralba, and Sanja Fidler. Learning to act properly: Predicting and explaining affordances from images.
In 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018, pages 975–983. IEEE
Computer Society, 2018.

[55] Jonathan Crabbé, Yao Zhang, William R. Zame, and Mihaela van der Schaar. Learning outside the black-box: The pursuit of interpretable models. In
Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Advances in Neural Information Processing
Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

[56] Mark W. Craven and Jude W. Shavlik. Extracting tree-structured representations of trained networks. In David S. Touretzky, Michael Mozer, and
Michael E. Hasselmo, editors, Advances in Neural Information Processing Systems 8, NIPS, Denver, CO, USA, November 27-30, 1995, pages 24–30. MIT
Press, 1995.

[57] Xiaocong Cui, Jung Min Lee, and J. Po-An Hsieh. An Integrative 3C evaluation framework for Explainable Artificial Intelligence. AMCIS 2019
Proceedings, July 2019.

[58] Sebastian Dalleiger and Jilles Vreeken. Explainable data decompositions. In The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020,
The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in
Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pages 3709–3716. AAAI Press, 2020.

[59] Arun Das and Paul Rad. Opportunities and challenges in explainable artificial intelligence (xai): A survey. arXiv preprint arXiv:2006.11371, 2020.
[60] Amit Dhurandhar, Pin-Yu Chen, Ronny Luss, Chun-Chen Tu, Pai-Shun Ting, Karthikeyan Shanmugam, and Payel Das. Explanations based on the

missing: Towards contrastive explanations with pertinent negatives. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman,
Nicolò Cesa-Bianchi, and Roman Garnett, editors, Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information
Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pages 590–601, 2018.

[61] Ann-Kathrin Dombrowski, Maximilian Alber, Christopher J. Anders, Marcel Ackermann, Klaus-Robert Müller, and Pan Kessel. Explanations can be
manipulated and geometry is to blame. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman
Garnett, editors, Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS
2019, December 8-14, 2019, Vancouver, BC, Canada, pages 13567–13578, 2019.

[62] Yinpeng Dong, Hang Su, Jun Zhu, and Bo Zhang. Improving interpretability of deep neural networks with semantic information. In 2017 IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017, pages 975–983. IEEE Computer Society, 2017.

[63] Finale Doshi-Velez and Been Kim. Considerations for Evaluation and Generalization in Interpretable Machine Learning. In Hugo Jair Escalante,
Sergio Escalera, Isabelle Guyon, Xavier Baró, Yağmur Güçlütürk, Umut Güçlü, and Marcel van Gerven, editors, Explainable and Interpretable Models
in Computer Vision and Machine Learning, pages 3–17. Springer International Publishing, Cham, 2018.

[64] Mengnan Du, Ninghao Liu, Qingquan Song, and Xia Hu. Towards explanation of dnn-based prediction with guided feature inversion. In Yike Guo
and Faisal Farooq, editors, Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD 2018, London,
UK, August 19-23, 2018, pages 1358–1367. ACM, 2018.

[65] Upol Ehsan, Philipp Wintersberger, Q. Vera Liao, Martina Mara, Marc Streit, Sandra Wachter, Andreas Riener, and Mark O. Riedl. Operationalizing
human-centered perspectives in explainable ai. In Extended Abstracts of the 2021 CHI Conference on Human Factors in Computing Systems, CHI EA
’21, New York, NY, USA, 2021. Association for Computing Machinery.

[66] Patrick Esser, Robin Rombach, and Björn Ommer. A disentangling invertible interpretation network for explaining latent representations. In 2020
IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020, pages 9220–9229. IEEE, 2020.

[67] Christian Etmann, Sebastian Lunz, Peter Maass, and Carola Schönlieb. On the connection between adversarial robustness and saliency map
interpretability. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th International Conference on Machine Learning,
ICML 2019, 9-15 June 2019, Long Beach, California, USA, volume 97 of Proceedings of Machine Learning Research, pages 1823–1832. PMLR, 2019.

[68] Alexander R. Fabbri, Wojciech KryÅ›ciÅ„ski, Bryan McCann, Caiming Xiong, Richard Socher, and Dragomir Radev. SummEval: Re-evaluating
Summarization Evaluation. Transactions of the Association for Computational Linguistics, 9:391–409, 04 2021.

[69] Zeon Trevor Fernando, Jaspreet Singh, and Avishek Anand. A study on the interpretability of neural retrieval models using deepshap. In Benjamin
Piwowarski, Max Chevalier, Éric Gaussier, Yoelle Maarek, Jian-Yun Nie, and Falk Scholer, editors, Proceedings of the 42nd International ACM SIGIR
Conference on Research and Development in Information Retrieval, SIGIR 2019, Paris, France, July 21-25, 2019, pages 1005–1008. ACM, 2019.



38 Nauta et al.

[70] Ruth Fong and Andrea Vedaldi. Net2vec: Quantifying and explaining how concepts are encoded by filters in deep neural networks. In 2018 IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018, pages 8730–8738. IEEE Computer
Society, 2018.

[71] Ruth C. Fong and Andrea Vedaldi. Interpretable explanations of black boxes by meaningful perturbation. In IEEE International Conference on
Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017, pages 3449–3457. IEEE Computer Society, 2017.

[72] Vincent Fortuin, Matthias Hüser, Francesco Locatello, Heiko Strathmann, and Gunnar Rätsch. SOM-VAE: interpretable discrete representation
learning on time series. In 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net,
2019.

[73] Jerome H. Friedman. Greedy function approximation: A gradient boosting machine. The Annals of Statistics, 29(5):1189–1232, 2001.
[74] Christopher Frye, Colin Rowat, and Ilya Feige. Asymmetric shapley values: incorporating causal knowledge into model-agnostic explainability. In

Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Advances in Neural Information Processing
Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

[75] Francesco Fusco, Michalis Vlachos, Vasileios Vasileiadis, Kathrin Wardatzky, and Johannes Schneider. Reconet: An interpretable neural architecture
for recommender systems. In Sarit Kraus, editor, Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI
2019, Macao, China, August 10-16, 2019, pages 2343–2349. ijcai.org, 2019.

[76] Alona Fyshe, Partha Pratim Talukdar, Brian Murphy, and Tom M. Mitchell. Interpretable semantic vectors from a joint model of brain- and text-
based meaning. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, ACL 2014, June 22-27, 2014, Baltimore,
MD, USA, Volume 1: Long Papers, pages 489–499. The Association for Computer Linguistics, 2014.

[77] Jingyue Gao, Xiting Wang, Yasha Wang, and Xing Xie. Explainable recommendation through attentive multi-view learning. In The Thirty-Third
AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artificial Intelligence Conference, IAAI 2019, The
Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019, pages
3622–3629. AAAI Press, 2019.

[78] Mohamed F. Ghalwash, Vladan Radosavljevic, and Zoran Obradovic. Utilizing temporal patterns for estimating uncertainty in interpretable early
decision making. In Sofus A. Macskassy, Claudia Perlich, Jure Leskovec, Wei Wang, and Rayid Ghani, editors, The 20th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’14, New York, NY, USA - August 24 - 27, 2014, pages 402–411. ACM, 2014.

[79] Amirata Ghorbani, Abubakar Abid, and James Y. Zou. Interpretation of neural networks is fragile. In The Thirty-Third AAAI Conference on Artificial
Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on
Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019, pages 3681–3688. AAAI Press, 2019.

[80] Amirata Ghorbani, James Wexler, James Y. Zou, and Been Kim. Towards automatic concept-based explanations. In Hanna M. Wallach, Hugo
Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett, editors, Advances in Neural Information Processing Systems
32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pages 9273–9282,
2019.

[81] Leilani H. Gilpin, David Bau, Ben Z. Yuan, Ayesha Bajwa, Michael Specter, and Lalana Kagal. Explaining explanations: An overview of interpretability
of machine learning. In 2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA), pages 80–89, 2018.

[82] Alex Goldstein, Adam Kapelner, Justin Bleich, and Emil Pitkin. Peeking inside the black box: Visualizing statistical learning with plots of individual
conditional expectation. Journal of Computational and Graphical Statistics, 24(1):44–65, 2015.

[83] Hila Gonen, Ganesh Jawahar, Djamé Seddah, and Yoav Goldberg. Simple, interpretable and stable method for detecting words with usage change
across corpora. In Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel R. Tetreault, editors, Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics, ACL 2020, Online, July 5-10, 2020, pages 538–555. Association for Computational Linguistics, 2020.

[84] Yash Goyal, Ziyan Wu, Jan Ernst, Dhruv Batra, Devi Parikh, and Stefan Lee. Counterfactual visual explanations. In Kamalika Chaudhuri and Ruslan
Salakhutdinov, editors, Proceedings of the 36th International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California,
USA, volume 97 of Proceedings of Machine Learning Research, pages 2376–2384. PMLR, 2019.

[85] Saul Greenberg and Bill Buxton. Usability evaluation considered harmful (some of the time). In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’08, page 111–120, New York, NY, USA, 2008. Association for Computing Machinery.

[86] Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri, Franco Turini, Fosca Giannotti, and Dino Pedreschi. A survey of methods for explaining
black box models. ACM computing surveys (CSUR), 51(5):1–42, 2018.

[87] Tian Guo, Tao Lin, and Nino Antulov-Fantulin. Exploring interpretable LSTM neural networks over multi-variable data. In Kamalika Chaudhuri
and Ruslan Salakhutdinov, editors, Proceedings of the 36th International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach,
California, USA, volume 97 of Proceedings of Machine Learning Research, pages 2494–2504. PMLR, 2019.

[88] Wenbo Guo, Sui Huang, Yunzhe Tao, Xinyu Xing, and Lin Lin. Explaining deep learning models - A bayesian non-parametric approach. In Samy
Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett, editors, Advances in Neural Information
Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pages
4519–4529, 2018.

[89] Xiaojie Guo, Liang Zhao, Zhao Qin, Lingfei Wu, Amarda Shehu, and Yanfang Ye. Interpretable deep graph generation with node-edge co-
disentanglement. In Rajesh Gupta, Yan Liu, Jiliang Tang, and B. Aditya Prakash, editors, KDD ’20: The 26th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, Virtual Event, CA, USA, August 23-27, 2020, pages 1697–1707. ACM, 2020.



A Systematic Review on Evaluating Explainable AI 39

[90] Xiaochuang Han, Byron C.Wallace, and Yulia Tsvetkov. Explaining black box predictions and unveiling data artifacts through influence functions. In
Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel R. Tetreault, editors, Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics, ACL 2020, Online, July 5-10, 2020, pages 5553–5563. Association for Computational Linguistics, 2020.

[91] Kotaro Hara, Abigail Adams, Kristy Milland, Saiph Savage, Chris Callison-Burch, and Jeffrey P Bigham. A data-driven analysis of workers’ earnings
on amazon mechanical turk. In Proceedings of the 2018 CHI conference on human factors in computing systems, pages 1–14, 2018.

[92] Frederik Harder, Matthias Bauer, and Mijung Park. Interpretable and differentially private predictions. In The Thirty-Fourth AAAI Conference
on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI
Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pages 4083–4090. AAAI Press, 2020.

[93] Peter Hase and Mohit Bansal. Evaluating explainable AI: which algorithmic explanations help users predict model behavior? In Dan Jurafsky,
Joyce Chai, Natalie Schluter, and Joel R. Tetreault, editors, Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics,
ACL 2020, Online, July 5-10, 2020, pages 5540–5552. Association for Computational Linguistics, 2020.

[94] Jay Heo, Haebeom Lee, Saehoon Kim, Juho Lee, Kwang Joon Kim, Eunho Yang, and Sung Ju Hwang. Uncertainty-aware attention for reliable
interpretation and prediction. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett,
editors, Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018,
December 3-8, 2018, Montréal, Canada, pages 917–926, 2018.

[95] Juyeon Heo, Sunghwan Joo, and Taesup Moon. Fooling neural network interpretations via adversarial model manipulation. In Hanna M. Wallach,
Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett, editors, Advances in Neural Information Processing
Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pages
2921–2932, 2019.

[96] Bernease Herman. The Promise and Peril of Human Evaluation for Model Interpretability. arXiv:1711.07414 [cs, stat], November 2017. arXiv:
1711.07414.

[97] TomHeskes, Evi Sijben, Ioan Gabriel Bucur, and Tom Claassen. Causal shapley values: Exploiting causal knowledge to explain individual predictions
of complex models. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Advances in
Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020,
virtual, 2020.

[98] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans trained by a two time-scale update rule
converge to a local nash equilibrium. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors,
Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

[99] Nicholas Hoernle, Kobi Gal, Barbara J. Grosz, Leilah Lyons, Ada Ren, and Andee Rubin. Interpretable models for understanding immersive
simulations. In Christian Bessiere, editor, Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI 2020, pages
2319–2325. ijcai.org, 2020.

[100] Robert R. Hoffman, Shane T. Mueller, Gary Klein, and Jordan Litman. Metrics for Explainable AI: Challenges and Prospects. arXiv:1812.04608 [cs],
February 2019. arXiv: 1812.04608.

[101] Milo Honegger. Shedding Light on Black Box Machine Learning Algorithms: Development of an Axiomatic Framework to Assess the Quality of
Methods that Explain Individual Predictions. arXiv:1808.05054 [cs, stat], August 2018. arXiv: 1808.05054.

[102] Sara Hooker, Dumitru Erhan, Pieter-Jan Kindermans, and Been Kim. A benchmark for interpretability methods in deep neural networks. In
Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett, editors, Advances in Neural
Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver,
BC, Canada, pages 9734–9745, 2019.

[103] Bo-Jian Hou and Zhi-Hua Zhou. Learning with interpretable structure from gated rnn. IEEE Transactions on Neural Networks and Learning Systems,
31(7):2267–2279, 2020.

[104] Lukas Hoyer, Mauricio Munoz, Prateek Katiyar, Anna Khoreva, and Volker Fischer. Grid saliency for context explanations of semantic segmentation.
In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett, editors, Advances in Neural
Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver,
BC, Canada, pages 6459–6470, 2019.

[105] Wei-Ning Hsu, Yu Zhang, and James R. Glass. Unsupervised learning of disentangled and interpretable representations from sequential data. In
Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett, editors, Advances in
Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA,
USA, pages 1878–1889, 2017.

[106] Mengdi Huai, Di Wang, Chenglin Miao, and Aidong Zhang. Towards interpretation of pairwise learning. In The Thirty-Fourth AAAI Conference
on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI
Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pages 4166–4173. AAAI Press, 2020.

[107] Zixuan Huang and Yin Li. Interpretable and accurate fine-grained recognition via region grouping. In 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020, pages 8659–8669. IEEE, 2020.

[108] Johan Huysmans, Karel Dejaeger, Christophe Mues, Jan Vanthienen, and Bart Baesens. An empirical evaluation of the comprehensibility of decision
table, tree and rule based predictive models. Decision Support Systems, 51(1):141–154, April 2011.



40 Nauta et al.

[109] Alexey Ignatiev, Nina Narodytska, and João Marques-Silva. Abduction-based explanations for machine learning models. In The Thirty-Third
AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artificial Intelligence Conference, IAAI 2019, The
Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019, pages
1511–1519. AAAI Press, 2019.

[110] Aya Abdelsalam Ismail, Mohamed K. Gunady, Héctor Corrada Bravo, and Soheil Feizi. Benchmarking deep learning interpretability in time series
predictions. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Advances in Neural
Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

[111] Alon Jacovi and Yoav Goldberg. Towards faithfully interpretable NLP systems: How should we define and evaluate faithfulness? In Dan Jurafsky,
Joyce Chai, Natalie Schluter, and Joel R. Tetreault, editors, Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics,
ACL 2020, Online, July 5-10, 2020, pages 4198–4205. Association for Computational Linguistics, 2020.

[112] Tomas Jakab, Ankush Gupta, Hakan Bilen, and Andrea Vedaldi. Self-supervised learning of interpretable keypoints from unlabelled videos. In 2020
IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020, pages 8784–8794. IEEE, 2020.

[113] Jeya Vikranth Jeyakumar, Joseph Noor, Yu-Hsi Cheng, Luis Garcia, and Mani B. Srivastava. How can I explain this to you? an empirical study of
deep neural network explanation methods. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin,
editors, Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020,
December 6-12, 2020, virtual, 2020.

[114] Kishlay Jha, Yaqing Wang, Guangxu Xun, and Aidong Zhang. Interpretable word embeddings for medical domain. In IEEE International Conference
on Data Mining, ICDM 2018, Singapore, November 17-20, 2018, pages 1061–1066. IEEE Computer Society, 2018.

[115] Yunzhe Jia, James Bailey, Kotagiri Ramamohanarao, Christopher Leckie, and Michael E. Houle. Improving the quality of explanations with local
embedding perturbations. In Ankur Teredesai, Vipin Kumar, Ying Li, Rómer Rosales, Evimaria Terzi, and George Karypis, editors, Proceedings of
the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD 2019, Anchorage, AK, USA, August 4-8, 2019, pages
875–884. ACM, 2019.

[116] Yichen Jiang, Nitish Joshi, Yen-Chun Chen, and Mohit Bansal. Explore, propose, and assemble: An interpretable model for multi-hop reading
comprehension. In Anna Korhonen, David R. Traum, and Lluís Màrquez, editors, Proceedings of the 57th Conference of the Association for
Computational Linguistics, ACL 2019, Florence, Italy, July 28- August 2, 2019, Volume 1: Long Papers, pages 2714–2725. Association for Computational
Linguistics, 2019.

[117] Wengong Jin, Regina Barzilay, and Tommi S. Jaakkola. Multi-objective molecule generation using interpretable substructures. In Proceedings of
the 37th International Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of Machine Learning
Research, pages 4849–4859. PMLR, 2020.

[118] Xisen Jin, Zhongyu Wei, Junyi Du, Xiangyang Xue, and Xiang Ren. Towards hierarchical importance attribution: Explaining compositional
semantics for neural sequence models. In 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30,
2020. OpenReview.net, 2020.

[119] John R Josephson and Susan G Josephson. Abductive inference: Computation, philosophy, technology. Cambridge University Press, 1996.
[120] Gargi Joshi, Rahee Walambe, and Ketan Kotecha. A review on explainability in multimodal deep neural nets. IEEE Access, 9:59800–59821, 2021.
[121] Kentaro Kanamori, Takuya Takagi, Ken Kobayashi, and Hiroki Arimura. DACE: distribution-aware counterfactual explanation by mixed-integer

linear optimization. In Christian Bessiere, editor, Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI 2020,
pages 2855–2862. ijcai.org, 2020.

[122] Atsushi Kanehira and Tatsuya Harada. Learning to explain with complemental examples. In IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019, pages 8603–8611. Computer Vision Foundation / IEEE, 2019.

[123] Atsushi Kanehira, Kentaro Takemoto, Sho Inayoshi, and Tatsuya Harada. Multimodal explanations by predicting counterfactuality in videos. In
IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019, pages 8594–8602. Computer Vision
Foundation / IEEE, 2019.

[124] Isak Karlsson, Jonathan Rebane, Panagiotis Papapetrou, and Aristides Gionis. Explainable time series tweaking via irreversible and reversible
temporal transformations. In IEEE International Conference on Data Mining, ICDM 2018, Singapore, November 17-20, 2018, pages 207–216. IEEE
Computer Society, 2018.

[125] Been Kim, Oluwasanmi Koyejo, and Rajiv Khanna. Examples are not enough, learn to criticize! criticism for interpretability. In Daniel D. Lee,
Masashi Sugiyama, Ulrike von Luxburg, Isabelle Guyon, and Roman Garnett, editors, Advances in Neural Information Processing Systems 29: Annual
Conference on Neural Information Processing Systems 2016, December 5-10, 2016, Barcelona, Spain, pages 2280–2288, 2016.

[126] Been Kim, Kayur Patel, Afshin Rostamizadeh, and Julie A. Shah. Scalable and interpretable data representation for high-dimensional, complex data.
In Blai Bonet and Sven Koenig, editors, Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, January 25-30, 2015, Austin,
Texas, USA, pages 1763–1769. AAAI Press, 2015.

[127] Been Kim, Martin Wattenberg, Justin Gilmer, Carrie J. Cai, James Wexler, Fernanda B. Viégas, and Rory Sayres. Interpretability beyond feature
attribution: Quantitative testing with concept activation vectors (TCAV). In Jennifer G. Dy and Andreas Krause, editors, Proceedings of the 35th
International Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings of
Machine Learning Research, pages 2673–2682. PMLR, 2018.



A Systematic Review on Evaluating Explainable AI 41

[128] Edward Kim, Divya Gopinath, Corina S. Pasareanu, and Sanjit A. Seshia. A programmatic and semantic approach to explaining and debugging
neural network based object detectors. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, June
13-19, 2020, pages 11125–11134. IEEE, 2020.

[129] Hyunjik Kim and Andriy Mnih. Disentangling by factorising. In Jennifer Dy and Andreas Krause, editors, Proceedings of the 35th International
Conference on Machine Learning, volume 80 of Proceedings of Machine Learning Research, pages 2649–2658. PMLR, 10–15 Jul 2018.

[130] Wonjae Kim and Yoonho Lee. Learning dynamics of attention: Human prior for interpretable machine reasoning. In Hanna M. Wallach, Hugo
Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett, editors, Advances in Neural Information Processing Systems
32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pages 6019–6030,
2019.

[131] Pieter-Jan Kindermans, Kristof T. Schütt, Maximilian Alber, Klaus-Robert Müller, Dumitru Erhan, Been Kim, and Sven Dähne. Learning how to
explain neural networks: Patternnet and patternattribution. In 6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC,
Canada, April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net, 2018.

[132] T. Kulesza, S. Stumpf, M. Burnett, S. Yang, I. Kwan, and W. Wong. Too much, too little, or just right? Ways explanations impact end users’ mental
models. In 2013 IEEE Symposium on Visual Languages and Human Centric Computing, pages 3–10, September 2013. ISSN: 1943-6106.

[133] Todd Kulesza, Margaret Burnett, Weng-Keen Wong, and Simone Stumpf. Principles of Explanatory Debugging to Personalize Interactive Machine
Learning. In Proceedings of the 20th International Conference on Intelligent User Interfaces, IUI ’15, pages 126–137, Atlanta, Georgia, USA, March
2015. Association for Computing Machinery.

[134] Sawan Kumar and Partha P. Talukdar. NILE : Natural language inference with faithful natural language explanations. In Dan Jurafsky, Joyce Chai,
Natalie Schluter, and Joel R. Tetreault, editors, Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, ACL 2020,
Online, July 5-10, 2020, pages 8730–8742. Association for Computational Linguistics, 2020.

[135] Christophe Labreuche and Simon Fossier. Explaining multi-criteria decision aiding models with an extended shapley value. In Jérôme Lang, editor,
Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI 2018, July 13-19, 2018, Stockholm, Sweden, pages
331–339. ijcai.org, 2018.

[136] Isaac Lage, Emily Chen, Jeffrey He, Menaka Narayanan, Been Kim, Sam Gershman, and Finale Doshi-Velez. An Evaluation of the Human-
Interpretability of Explanation. arXiv:1902.00006 [cs, stat], January 2019. arXiv: 1902.00006.

[137] Isaac Lage, Andrew Slavin Ross, Samuel J. Gershman, Been Kim, and Finale Doshi-Velez. Human-in-the-loop interpretability prior. In Samy
Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett, editors, Advances in Neural Information
Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pages
10180–10189, 2018.

[138] Himabindu Lakkaraju, Nino Arsov, and Osbert Bastani. Robust and stable black box explanations. In Proceedings of the 37th International Conference
on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of Machine Learning Research, pages 5628–5638. PMLR,
2020.

[139] Himabindu Lakkaraju, Stephen H. Bach, and Jure Leskovec. Interpretable decision sets: A joint framework for description and prediction. In Balaji
Krishnapuram, Mohak Shah, Alexander J. Smola, Charu C. Aggarwal, Dou Shen, and Rajeev Rastogi, editors, Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, August 13-17, 2016, pages 1675–1684. ACM, 2016.

[140] Himabindu Lakkaraju and Jure Leskovec. Confusions over time: An interpretable bayesian model to characterize trends in decision making. In
Daniel D. Lee, Masashi Sugiyama, Ulrike von Luxburg, Isabelle Guyon, and Roman Garnett, editors, Advances in Neural Information Processing
Systems 29: Annual Conference on Neural Information Processing Systems 2016, December 5-10, 2016, Barcelona, Spain, pages 3261–3269, 2016.

[141] Liang Lan and Yu Geng. Accurate and interpretable factorization machines. In The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI
2019, The Thirty-First Innovative Applications of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on Educational Advances in
Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019, pages 4139–4146. AAAI Press, 2019.

[142] J Richard Landis and Gary G Koch. The measurement of observer agreement for categorical data. biometrics, pages 159–174, 1977.
[143] Thibault Laugel, Marie-Jeanne Lesot, Christophe Marsala, Xavier Renard, and Marcin Detyniecki. The dangers of post-hoc interpretability:

Unjustified counterfactual explanations. In Sarit Kraus, editor, Proceedings of the Twenty-Eighth International Joint Conference on Artificial
Intelligence, IJCAI 2019, Macao, China, August 10-16, 2019, pages 2801–2807. ijcai.org, 2019.

[144] Thai Le, Suhang Wang, and Dongwon Lee. GRACE: generating concise and informative contrastive sample to explain neural network model’s
prediction. In Rajesh Gupta, Yan Liu, Jiliang Tang, and B. Aditya Prakash, editors, KDD ’20: The 26th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, Virtual Event, CA, USA, August 23-27, 2020, pages 238–248. ACM, 2020.

[145] Trung-Hoang Le and Hady W. Lauw. Synthesizing aspect-driven recommendation explanations from reviews. In Christian Bessiere, editor,
Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI 2020, pages 2427–2434. ijcai.org, 2020.

[146] Matthew L. Leavitt and Ari Morcos. Towards falsifiable interpretability research. arXiv:2010.12016 [cs, stat], October 2020. arXiv: 2010.12016.
[147] Jierui Li, Lemao Liu, Huayang Li, Guanlin Li, Guoping Huang, and Shuming Shi. Evaluating explanation methods for neural machine translation. In

Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel R. Tetreault, editors, Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics, ACL 2020, Online, July 5-10, 2020, pages 365–375. Association for Computational Linguistics, 2020.

[148] Jian Liang, Bing Bai, Yuren Cao, Kun Bai, and Fei Wang. Adversarial infidelity learning for model interpretation. In Rajesh Gupta, Yan Liu, Jiliang
Tang, and B. Aditya Prakash, editors, KDD ’20: The 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Virtual Event, CA, USA,



42 Nauta et al.

August 23-27, 2020, pages 286–296. ACM, 2020.
[149] Chin-Yew Lin. ROUGE: A package for automatic evaluation of summaries. In Text Summarization Branches Out, pages 74–81, Barcelona, Spain,

July 2004. Association for Computational Linguistics.
[150] Zachary C. Lipton. The mythos of model interpretability: In machine learning, the concept of interpretability is both important and slippery.

Queue, 16(3):31–57, jun 2018.
[151] Haoyu Liu, Fenglong Ma, Yaqing Wang, Shibo He, Jiming Chen, and Jing Gao. Lp-explain: Local pictorial explanation for outliers. In Claudia Plant,

Haixun Wang, Alfredo Cuzzocrea, Carlo Zaniolo, and Xindong Wu, editors, 20th IEEE International Conference on Data Mining, ICDM 2020, Sorrento,
Italy, November 17-20, 2020, pages 372–381. IEEE, 2020.

[152] Hui Liu, Qingyu Yin, and William Yang Wang. Towards explainable NLP: A generative explanation framework for text classification. In Anna
Korhonen, David R. Traum, and Lluís Màrquez, editors, Proceedings of the 57th Conference of the Association for Computational Linguistics, ACL
2019, Florence, Italy, July 28- August 2, 2019, Volume 1: Long Papers, pages 5570–5581. Association for Computational Linguistics, 2019.

[153] Ninghao Liu, Xiao Huang, Jundong Li, and Xia Hu. On interpretation of network embedding via taxonomy induction. In Yike Guo and Faisal
Farooq, editors, Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD 2018, London, UK,
August 19-23, 2018, pages 1812–1820. ACM, 2018.

[154] Ninghao Liu, Donghwa Shin, and Xia Hu. Contextual outlier interpretation. In Jérôme Lang, editor, Proceedings of the Twenty-Seventh International
Joint Conference on Artificial Intelligence, IJCAI 2018, July 13-19, 2018, Stockholm, Sweden, pages 2461–2467. ijcai.org, 2018.

[155] Ninghao Liu, Hongxia Yang, and Xia Hu. Adversarial detection with model interpretation. In Yike Guo and Faisal Farooq, editors, Proceedings of the
24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD 2018, London, UK, August 19-23, 2018, pages 1803–1811.
ACM, 2018.

[156] WenQian Liu, Runze Li, Meng Zheng, Srikrishna Karanam, Ziyan Wu, Bir Bhanu, Richard J. Radke, and Octavia I. Camps. Towards visually
explaining variational autoencoders. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, June
13-19, 2020, pages 8639–8648. IEEE, 2020.

[157] Scott M. Lundberg and Su-In Lee. A unified approach to interpreting model predictions. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio,
Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett, editors, Advances in Neural Information Processing Systems 30: Annual
Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pages 4765–4774, 2017.

[158] Dongsheng Luo, Wei Cheng, Dongkuan Xu, Wenchao Yu, Bo Zong, Haifeng Chen, and Xiang Zhang. Parameterized explainer for graph neural
network. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Advances in Neural
Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

[159] Ling Luo, Xiang Ao, Feiyang Pan, Jin Wang, Tong Zhao, Ningzi Yu, and Qing He. Beyond polarity: Interpretable financial sentiment analysis
with hierarchical query-driven attention. In Jérôme Lang, editor, Proceedings of the Twenty-Seventh International Joint Conference on Artificial
Intelligence, IJCAI 2018, July 13-19, 2018, Stockholm, Sweden, pages 4244–4250. ijcai.org, 2018.

[160] José Oramas M., Kaili Wang, and Tinne Tuytelaars. Visual explanation by interpretation: Improving visual feedback capabilities of deep neural
networks. In 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019.

[161] Prashan Madumal, Tim Miller, Liz Sonenberg, and Frank Vetere. Explainable reinforcement learning through a causal lens. In The Thirty-Fourth
AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The
Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pages 2493–2500.
AAAI Press, 2020.

[162] Aniek F. Markus, Jan A. Kors, and Peter R. Rijnbeek. The role of explainability in creating trustworthy artificial intelligence for health care: A
comprehensive survey of the terminology, design choices, and evaluation strategies. Journal of Biomedical Informatics, 113:103655, January 2021.

[163] João Marques-Silva, Thomas Gerspacher, Martin C. Cooper, Alexey Ignatiev, and Nina Narodytska. Explaining naive bayes and other linear
classifiers with polynomial time and delay. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin,
editors, Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020,
December 6-12, 2020, virtual, 2020.

[164] David Mascharka, Philip Tran, Ryan Soklaski, and Arjun Majumdar. Transparency by design: Closing the gap between performance and
interpretability in visual reasoning. In 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June
18-22, 2018, pages 4942–4950. IEEE Computer Society, 2018.

[165] Siyu Mi and Jiepu Jiang. Understanding the interpretability of search result summaries. In Benjamin Piwowarski, Max Chevalier, Éric Gaussier,
Yoelle Maarek, Jian-Yun Nie, and Falk Scholer, editors, Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in
Information Retrieval, SIGIR 2019, Paris, France, July 21-25, 2019, pages 989–992. ACM, 2019.

[166] Tim Miller. Explanation in artificial intelligence: Insights from the social sciences. Artificial Intelligence, 267:1–38, 2019.
[167] Tim Miller, Piers Howe, and Liz Sonenberg. Explainable AI: Beware of Inmates Running the Asylum. page 7, 2017.
[168] Yao Ming, Panpan Xu, Huamin Qu, and Liu Ren. Interpretable and steerable sequence learning via prototypes. In Ankur Teredesai, Vipin Kumar,

Ying Li, Rómer Rosales, Evimaria Terzi, and George Karypis, editors, Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, KDD 2019, Anchorage, AK, USA, August 4-8, 2019, pages 903–913. ACM, 2019.

[169] Akash Kumar Mohankumar, Preksha Nema, Sharan Narasimhan, Mitesh M. Khapra, Balaji Vasan Srinivasan, and Balaraman Ravindran. Towards
transparent and explainable attention models. In Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel R. Tetreault, editors, Proceedings of the 58th



A Systematic Review on Evaluating Explainable AI 43

Annual Meeting of the Association for Computational Linguistics, ACL 2020, Online, July 5-10, 2020, pages 4206–4216. Association for Computational
Linguistics, 2020.

[170] Sina Mohseni, Niloofar Zarei, and Eric D. Ragan. A multidisciplinary survey and framework for design and evaluation of explainable ai systems.
ACM Trans. Interact. Intell. Syst., 11(3–4), aug 2021.

[171] Christoph Molnar. Interpretable machine learning. https://christophm.github.io/interpretable-ml-book/, 2020.
[172] Grégoire Montavon. Gradient-Based Vs. Propagation-Based Explanations: An Axiomatic Comparison. In Wojciech Samek, Grégoire Montavon,

Andrea Vedaldi, Lars Kai Hansen, and Klaus-Robert Müller, editors, Explainable AI: Interpreting, Explaining and Visualizing Deep Learning, Lecture
Notes in Computer Science, pages 253–265. Springer International Publishing, Cham, 2019.

[173] Grégoire Montavon, Wojciech Samek, and Klaus-Robert Müller. Methods for interpreting and understanding deep neural networks. Digital Signal
Processing, 73:1–15, February 2018.

[174] Seungwhan Moon, Pararth Shah, Anuj Kumar, and Rajen Subba. Opendialkg: Explainable conversational reasoning with attention-based walks
over knowledge graphs. In Anna Korhonen, David R. Traum, and Lluís Màrquez, editors, Proceedings of the 57th Conference of the Association for
Computational Linguistics, ACL 2019, Florence, Italy, July 28- August 2, 2019, Volume 1: Long Papers, pages 845–854. Association for Computational
Linguistics, 2019.

[175] Raha Moraffah, Mansooreh Karami, Ruocheng Guo, Adrienne Raglin, and Huan Liu. Causal interpretability for machine learning - problems,
methods and evaluation. SIGKDD Explor. Newsl., 22(1):18–33, May 2020.

[176] Jesse Mu and Jacob Andreas. Compositional explanations of neurons. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina
Balcan, and Hsuan-Tien Lin, editors, Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing
Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

[177] W. James Murdoch, Chandan Singh, Karl Kumbier, Reza Abbasi-Asl, and Bin Yu. Definitions, methods, and applications in interpretable machine
learning. Proceedings of the National Academy of Sciences, 116(44):22071–22080, 2019.

[178] Woo-Jeoung Nam, Shir Gur, Jaesik Choi, Lior Wolf, and Seong-Whan Lee. Relative attributing propagation: Interpreting the comparative
contributions of individual units in deep neural networks. In The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-
Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial
Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pages 2501–2508. AAAI Press, 2020.

[179] Meike Nauta, Ron van Bree, and Christin Seifert. Neural prototype trees for interpretable fine-grained image recognition. In 2021 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pages 14928–14938, 2021.

[180] Anh Nguyen, Alexey Dosovitskiy, Jason Yosinski, Thomas Brox, and Jeff Clune. Synthesizing the preferred inputs for neurons in neural networks
via deep generator networks. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural Information Processing
Systems, volume 29. Curran Associates, Inc., 2016.

[181] Weili Nie, Yang Zhang, and Ankit Patel. A theoretical explanation for perplexing behaviors of backpropagation-based visualizations. In Jennifer G.
Dy and Andreas Krause, editors, Proceedings of the 35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm,
Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine Learning Research, pages 3806–3815. PMLR, 2018.

[182] Ingrid Nunes and Dietmar Jannach. A systematic review and taxonomy of explanations in decision support and recommender systems. User
Modeling and User-Adapted Interaction, 27(3):393–444, 2017.

[183] Chris Olah, Alexander Mordvintsev, and Ludwig Schubert. Feature visualization. Distill, 2017. https://distill.pub/2017/feature-visualization.
[184] Matthew R. O’Shaughnessy, Gregory Canal, Marissa Connor, Christopher Rozell, and Mark A. Davenport. Generative causal explanations of

black-box classifiers. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Advances in
Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020,
virtual, 2020.

[185] Rohan R. Paleja, Andrew Silva, Letian Chen, and Matthew C. Gombolay. Interpretable and personalized apprenticeship scheduling: Learning
interpretable scheduling policies from heterogeneous user demonstrations. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina
Balcan, and Hsuan-Tien Lin, editors, Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing
Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

[186] Deng Pan, Xiangrui Li, Xin Li, and Dongxiao Zhu. Explainable recommendation via interpretable feature mapping and evaluation of explainability.
In Christian Bessiere, editor, Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI 2020, pages 2690–2696.
ijcai.org, 2020.

[187] Menghai Pan, Weixiao Huang, Yanhua Li, Xun Zhou, and Jun Luo. xgail: Explainable generative adversarial imitation learning for explainable
human decision analysis. In Rajesh Gupta, Yan Liu, Jiliang Tang, and B. Aditya Prakash, editors, KDD ’20: The 26th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, Virtual Event, CA, USA, August 23-27, 2020, pages 1334–1343. ACM, 2020.

[188] Abhishek Panigrahi, Harsha Vardhan Simhadri, and Chiranjib Bhattacharyya. Word2sense: Sparse interpretable word embeddings. In Anna
Korhonen, David R. Traum, and Lluís Màrquez, editors, Proceedings of the 57th Conference of the Association for Computational Linguistics, ACL
2019, Florence, Italy, July 28- August 2, 2019, Volume 1: Long Papers, pages 5692–5705. Association for Computational Linguistics, 2019.

[189] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic evaluation of machine translation. In Proceedings of
the 40th Annual Meeting of the Association for Computational Linguistics, pages 311–318, Philadelphia, Pennsylvania, USA, July 2002. Association
for Computational Linguistics.



44 Nauta et al.

[190] Dong Huk Park, Lisa Anne Hendricks, Zeynep Akata, Anna Rohrbach, Bernt Schiele, Trevor Darrell, andMarcus Rohrbach. Multimodal explanations:
Justifying decisions and pointing to the evidence. In 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City,
UT, USA, June 18-22, 2018, pages 8779–8788. IEEE Computer Society, 2018.

[191] Jung Yeon Park, Kenneth Theo Carr, Stephan Zheng, Yisong Yue, and Rose Yu. Multiresolution tensor learning for efficient and interpretable
spatial analysis. In Proceedings of the 37th International Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of
Proceedings of Machine Learning Research, pages 7499–7509. PMLR, 2020.

[192] Badri N. Patro, Anupriy, and Vinay Namboodiri. Explanation vs attention: A two-player game to obtain attention for VQA. In The Thirty-Fourth
AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The
Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pages 11848–11855.
AAAI Press, 2020.

[193] Badri N. Patro, Mayank Lunayach, Shivansh Patel, and Vinay Namboodiri. U-CAM: visual explanation using uncertainty based class activation
maps. In 2019 IEEE/CVF International Conference on Computer Vision, ICCV 2019, Seoul, Korea (South), October 27 - November 2, 2019, pages 7443–7452.
IEEE, 2019.

[194] Martin Pawelczyk, Klaus Broelemann, and Gjergji Kasneci. Learning model-agnostic counterfactual explanations for tabular data. In Yennun
Huang, Irwin King, Tie-Yan Liu, and Maarten van Steen, editors, WWW ’20: The Web Conference 2020, Taipei, Taiwan, April 20-24, 2020, pages
3126–3132. ACM / IW3C2, 2020.

[195] Georgina Peake and Jun Wang. Explanation mining: Post hoc interpretability of latent factor models for recommendation systems. In Yike Guo
and Faisal Farooq, editors, Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD 2018, London,
UK, August 19-23, 2018, pages 2060–2069. ACM, 2018.

[196] Tejaswini Pedapati, Avinash Balakrishnan, Karthikeyan Shanmugam, and Amit Dhurandhar. Learning global transparent models consistent
with local contrastive explanations. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors,
Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December
6-12, 2020, virtual, 2020.

[197] Vitali Petsiuk, Abir Das, and Kate Saenko. Rise: Randomized input sampling for explanation of black-box models. In British Machine Vision
Conference (BMVC), 2018.

[198] Gregory Plumb, Maruan Al-Shedivat, Ángel Alexander Cabrera, Adam Perer, Eric P. Xing, and Ameet Talwalkar. Regularizing black-box models for
improved interpretability. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Advances in
Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020,
virtual, 2020.

[199] Gregory Plumb, Denali Molitor, and Ameet S. Talwalkar. Model agnostic supervised local explanations. In Samy Bengio, Hanna M. Wallach, Hugo
Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett, editors, Advances in Neural Information Processing Systems 31: Annual
Conference on Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pages 2520–2529, 2018.

[200] Gregory Plumb, Jonathan Terhorst, Sriram Sankararaman, and Ameet Talwalkar. Explaining groups of points in low-dimensional representations.
In Proceedings of the 37th International Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of
Machine Learning Research, pages 7762–7771. PMLR, 2020.

[201] Mirko Polato and Fabio Aiolli. Interpretable preference learning: A game theoretic framework for large margin on-line feature and rule learning.
In The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artificial Intelligence Conference,
IAAI 2019, The Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1,
2019, pages 4723–4730. AAAI Press, 2019.

[202] Phillip E. Pope, Soheil Kolouri, Mohammad Rostami, Charles E. Martin, and Heiko Hoffmann. Explainability methods for graph convolutional neural
networks. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019, pages 10772–10781.
Computer Vision Foundation / IEEE, 2019.

[203] Nina Pörner, Hinrich Schütze, and Benjamin Roth. Evaluating neural network explanation methods using hybrid documents and morphosyntactic
agreement. In Iryna Gurevych and Yusuke Miyao, editors, Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics,
ACL 2018, Melbourne, Australia, July 15-20, 2018, Volume 1: Long Papers, pages 340–350. Association for Computational Linguistics, 2018.

[204] Danish Pruthi, Mansi Gupta, Bhuwan Dhingra, Graham Neubig, and Zachary C. Lipton. Learning to deceive with attention-based explanations. In
Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel R. Tetreault, editors, Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics, ACL 2020, Online, July 5-10, 2020, pages 4782–4793. Association for Computational Linguistics, 2020.

[205] Nikaash Puri, Sukriti Verma, Piyush Gupta, Dhruv Kayastha, Shripad Deshmukh, Balaji Krishnamurthy, and Sameer Singh. Explain your move:
Understanding agent actions using specific and relevant feature attribution. In 8th International Conference on Learning Representations, ICLR 2020,
Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020.

[206] Zhongang Qi, Saeed Khorram, and Li Fuxin. Embedding deep networks into visual explanations. Artificial Intelligence, 292:103435, March 2021.
[207] Maithra Raghu, Justin Gilmer, Jason Yosinski, and Jascha Sohl-Dickstein. SVCCA: singular vector canonical correlation analysis for deep learning

dynamics and interpretability. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and
Roman Garnett, editors, Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017,
December 4-9, 2017, Long Beach, CA, USA, pages 6076–6085, 2017.



A Systematic Review on Evaluating Explainable AI 45

[208] Nazneen Fatema Rajani, Bryan McCann, Caiming Xiong, and Richard Socher. Explain yourself! leveraging language models for commonsense
reasoning. In Anna Korhonen, David R. Traum, and Lluís Màrquez, editors, Proceedings of the 57th Conference of the Association for Computational
Linguistics, ACL 2019, Florence, Italy, July 28- August 2, 2019, Volume 1: Long Papers, pages 4932–4942. Association for Computational Linguistics,
2019.

[209] Karthikeyan Natesan Ramamurthy, Bhanukiran Vinzamuri, Yunfeng Zhang, and Amit Dhurandhar. Model agnostic multilevel explanations. In
Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Advances in Neural Information Processing
Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

[210] Jerome Ramos and Carsten Eickhoff. Search result explanations improve efficiency and trust. In Jimmy Huang, Yi Chang, Xueqi Cheng, Jaap Kamps,
Vanessa Murdock, Ji-Rong Wen, and Yiqun Liu, editors, Proceedings of the 43rd International ACM SIGIR conference on research and development in
Information Retrieval, SIGIR 2020, Virtual Event, China, July 25-30, 2020, pages 1597–1600. ACM, 2020.

[211] Kaivalya Rawal and Himabindu Lakkaraju. Beyond individualized recourse: Interpretable and interactive summaries of actionable recourses. In
Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Advances in Neural Information Processing
Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

[212] Marco Túlio Ribeiro, Sameer Singh, and Carlos Guestrin. "why should I trust you?": Explaining the predictions of any classifier. In Balaji
Krishnapuram, Mohak Shah, Alexander J. Smola, Charu C. Aggarwal, Dou Shen, and Rajeev Rastogi, editors, Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, August 13-17, 2016, pages 1135–1144. ACM, 2016.

[213] Marco Túlio Ribeiro, Sameer Singh, and Carlos Guestrin. Anchors: High-precision model-agnostic explanations. In Sheila A. McIlraith and Kilian Q.
Weinberger, editors, Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th innovative Applications of
Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana,
USA, February 2-7, 2018, pages 1527–1535. AAAI Press, 2018.

[214] Marko Robnik-Šikonja and Marko Bohanec. Perturbation-Based Explanations of Prediction Models. In Jianlong Zhou and Fang Chen, editors,
Human and Machine Learning, pages 159–175. Springer International Publishing, Cham, 2018.

[215] Biagio La Rosa, Roberto Capobianco, and Daniele Nardi. Explainable inference on sequential data via memory-tracking. In Christian Bessiere,
editor, Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI 2020, pages 2006–2013. ijcai.org, 2020.

[216] Andrew Slavin Ross, Michael C. Hughes, and Finale Doshi-Velez. Right for the right reasons: Training differentiable models by constraining their
explanations. In Carles Sierra, editor, Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI 2017, Melbourne,
Australia, August 19-25, 2017, pages 2662–2670. ijcai.org, 2017.

[217] Cynthia Rudin. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nature Machine
Intelligence, 1(5):206–215, 2019.

[218] Raif M. Rustamov and James T. Klosowski. Interpretable graph-based semi-supervised learning via flows. In Sheila A. McIlraith and Kilian Q.
Weinberger, editors, Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th innovative Applications of
Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana,
USA, February 2-7, 2018, pages 3976–3983. AAAI Press, 2018.

[219] Wojciech Samek, Alexander Binder, Grégoire Montavon, Sebastian Lapuschkin, and Klaus-Robert Müller. Evaluating the Visualization of What a
Deep Neural Network Has Learned. IEEE Transactions on Neural Networks and Learning Systems, 28(11):2660–2673, November 2017. Conference
Name: IEEE Transactions on Neural Networks and Learning Systems.

[220] Patrick Schwab andWalter Karlen. Cxplain: Causal explanations for model interpretation under uncertainty. In Hanna M. Wallach, Hugo Larochelle,
Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett, editors, Advances in Neural Information Processing Systems 32: Annual
Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pages 10220–10230, 2019.

[221] Christin Seifert, Stefanie Scherzinger, and Lena Wiese. Towards Generating Consumer Labels for Machine Learning Models. In 2019 IEEE First
International Conference on Cognitive Machine Intelligence (CogMI), pages 173–179, Los Angeles, CA, USA, December 2019. IEEE.

[222] Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra. Grad-cam: Visual explanations
from deep networks via gradient-based localization. In IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29,
2017, pages 618–626. IEEE Computer Society, 2017.

[223] Ramprasaath Ramasamy Selvaraju, Stefan Lee, Yilin Shen, Hongxia Jin, Shalini Ghosh, Larry P. Heck, Dhruv Batra, and Devi Parikh. Taking a
HINT: leveraging explanations to make vision and language models more grounded. In 2019 IEEE/CVF International Conference on Computer Vision,
ICCV 2019, Seoul, Korea (South), October 27 - November 2, 2019, pages 2591–2600. IEEE, 2019.

[224] Alana Semuels. The internet is enabling a new kind of poorly paid hell. The Atlantic, Jan 2018.
[225] Sofia Serrano and Noah A. Smith. Is attention interpretable? In Anna Korhonen, David R. Traum, and Lluís Màrquez, editors, Proceedings of the

57th Conference of the Association for Computational Linguistics, ACL 2019, Florence, Italy, July 28- August 2, 2019, Volume 1: Long Papers, pages
2931–2951. Association for Computational Linguistics, 2019.

[226] Hamed Shahbazi, Xiaoli Z. Fern, Reza Ghaeini, and Prasad Tadepalli. Relation extraction with explanation. In Dan Jurafsky, Joyce Chai, Natalie
Schluter, and Joel R. Tetreault, editors, Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, ACL 2020, Online,
July 5-10, 2020, pages 6488–6494. Association for Computational Linguistics, 2020.

[227] Farhad Shakerin and Gopal Gupta. Induction of non-monotonic logic programs to explain boosted tree models using LIME. In The Thirty-Third
AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artificial Intelligence Conference, IAAI 2019, The



46 Nauta et al.

Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019, pages
3052–3059. AAAI Press, 2019.

[228] Yujun Shen, Jinjin Gu, Xiaoou Tang, and Bolei Zhou. Interpreting the latent space of gans for semantic face editing. In 2020 IEEE/CVF Conference
on Computer Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020, pages 9240–9249. IEEE, 2020.

[229] Wenxian Shi, Hao Zhou, Ning Miao, and Lei Li. Dispersed exponential family mixture vaes for interpretable text generation. In Proceedings of
the 37th International Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of Machine Learning
Research, pages 8840–8851. PMLR, 2020.

[230] Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Learning important features through propagating activation differences. In Doina
Precup and Yee Whye Teh, editors, Proceedings of the 34th International Conference on Machine Learning, volume 70 of Proceedings of Machine
Learning Research, pages 3145–3153. PMLR, 06–11 Aug 2017.

[231] Kai Shu, Limeng Cui, Suhang Wang, Dongwon Lee, and Huan Liu. defend: Explainable fake news detection. In Ankur Teredesai, Vipin Kumar,
Ying Li, Rómer Rosales, Evimaria Terzi, and George Karypis, editors, Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, KDD 2019, Anchorage, AK, USA, August 4-8, 2019, pages 395–405. ACM, 2019.

[232] Vivian Dos Santos Silva, André Freitas, and Siegfried Handschuh. Exploring knowledge graphs in an interpretable composite approach for text
entailment. In The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artificial Intelligence
Conference, IAAI 2019, The Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 -
February 1, 2019, pages 7023–7030. AAAI Press, 2019.

[233] Wilson Silva, Kelwin Fernandes, Maria J. Cardoso, and Jaime S. Cardoso. Towards Complementary Explanations Using Deep Neural Networks.
In Danail Stoyanov, Zeike Taylor, Seyed Mostafa Kia, Ipek Oguz, Mauricio Reyes, Anne Martel, Lena Maier-Hein, Andre F. Marquand, Edouard
Duchesnay, Tommy Löfstedt, Bennett Landman, M. Jorge Cardoso, Carlos A. Silva, Sergio Pereira, and Raphael Meier, editors, Understanding and
Interpreting Machine Learning in Medical Image Computing Applications, volume 11038, pages 133–140. Springer International Publishing, Cham,
2018.

[234] Chandan Singh, W. James Murdoch, and Bin Yu. Hierarchical interpretations for neural network predictions. In 7th International Conference on
Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019.

[235] Sumedha Singla, Brian Pollack, Junxiang Chen, and Kayhan Batmanghelich. Explanation by progressive exaggeration. In 8th International
Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020.

[236] Leon Sixt, Maximilian Granz, and Tim Landgraf. When explanations lie: Why many modified BP attributions fail. In Proceedings of the 37th
International Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of Machine Learning Research,
pages 9046–9057. PMLR, 2020.

[237] Kacper Sokol and Peter Flach. Explainability fact sheets: a framework for systematic assessment of explainable approaches. In Proceedings of the
2020 Conference on Fairness, Accountability, and Transparency, FAT* ’20, pages 56–67, New York, NY, USA, January 2020. Association for Computing
Machinery.

[238] Ramya Srinivasan and Ajay Chander. Explanation perspectives from the cognitive sciences—a survey. In Christian Bessiere, editor, Proceedings of
the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI-20, pages 4812–4818. International Joint Conferences on Artificial
Intelligence Organization, 7 2020. Survey track.

[239] Ilia Stepin, Jose M Alonso, Alejandro Catala, and Martín Pereira-Fariña. A survey of contrastive and counterfactual explanation generation methods
for explainable artificial intelligence. IEEE Access, 9:11974–12001, 2021.

[240] Anant Subramanian, Danish Pruthi, Harsh Jhamtani, Taylor Berg-Kirkpatrick, and Eduard H. Hovy. SPINE: sparse interpretable neural embeddings.
In Sheila A. McIlraith and Kilian Q. Weinberger, editors, Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18),
the 30th innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence
(EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018, pages 4921–4928. AAAI Press, 2018.

[241] Sanjay Subramanian, Ben Bogin, Nitish Gupta, TomerWolfson, Sameer Singh, Jonathan Berant, and Matt Gardner. Obtaining faithful interpretations
from compositional neural networks. In Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel R. Tetreault, editors, Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, ACL 2020, Online, July 5-10, 2020, pages 5594–5608. Association for Computational
Linguistics, 2020.

[242] Akshayvarun Subramanya, Vipin Pillai, and Hamed Pirsiavash. Fooling network interpretation in image classification. In 2019 IEEE/CVF International
Conference on Computer Vision, ICCV 2019, Seoul, Korea (South), October 27 - November 2, 2019, pages 2020–2029. IEEE, 2019.

[243] Peijie Sun, Le Wu, Kun Zhang, Yanjie Fu, Richang Hong, and Meng Wang. Dual learning for explainable recommendation: Towards unifying user
preference prediction and review generation. In Yennun Huang, Irwin King, Tie-Yan Liu, and Maarten van Steen, editors,WWW ’20: The Web
Conference 2020, Taipei, Taiwan, April 20-24, 2020, pages 837–847. ACM / IW3C2, 2020.

[244] Yiyou Sun, Sathya N. Ravi, and Vikas Singh. Adaptive activation thresholding: Dynamic routing type behavior for interpretability in convolutional
neural networks. In 2019 IEEE/CVF International Conference on Computer Vision, ICCV 2019, Seoul, Korea (South), October 27 - November 2, 2019,
pages 4937–4946. IEEE, 2019.

[245] Mukund Sundararajan and Amir Najmi. The many shapley values for model explanation. In Proceedings of the 37th International Conference on
Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of Machine Learning Research, pages 9269–9278. PMLR, 2020.



A Systematic Review on Evaluating Explainable AI 47

[246] William R. Swartout and Johanna D. Moore. Explanation in Second Generation Expert Systems. In Jean-Marc David, Jean-Paul Krivine, and Reid
Simmons, editors, Second Generation Expert Systems, pages 543–585, Berlin, Heidelberg, 1993. Springer.

[247] Alona Sydorova, Nina Pörner, and Benjamin Roth. Interpretable question answering on knowledge bases and text. In Anna Korhonen, David R.
Traum, and Lluís Màrquez, editors, Proceedings of the 57th Conference of the Association for Computational Linguistics, ACL 2019, Florence, Italy, July
28- August 2, 2019, Volume 1: Long Papers, pages 4943–4951. Association for Computational Linguistics, 2019.

[248] Yiyi Tao, Yiling Jia, Nan Wang, and Hongning Wang. The fact: Taming latent factor models for explainability with factorization trees. In Benjamin
Piwowarski, Max Chevalier, Éric Gaussier, Yoelle Maarek, Jian-Yun Nie, and Falk Scholer, editors, Proceedings of the 42nd International ACM SIGIR
Conference on Research and Development in Information Retrieval, SIGIR 2019, Paris, France, July 21-25, 2019, pages 295–304. ACM, 2019.

[249] Zhiqiang Tao, Sheng Li, Zhaowen Wang, Chen Fang, Longqi Yang, Handong Zhao, and Yun Fu. Log2intent: Towards interpretable user modeling
via recurrent semantics memory unit. In Ankur Teredesai, Vipin Kumar, Ying Li, Rómer Rosales, Evimaria Terzi, and George Karypis, editors,
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD 2019, Anchorage, AK, USA, August 4-8,
2019, pages 1055–1063. ACM, 2019.

[250] Nava Tintarev and Judith Masthoff. Explaining Recommendations: Design and Evaluation, pages 353–382. Springer US, Boston, MA, 2015.
[251] Gabriele Tolomei, Fabrizio Silvestri, Andrew Haines, and Mounia Lalmas. Interpretable predictions of tree-based ensembles via actionable feature

tweaking. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, NS, Canada, August
13 - 17, 2017, pages 465–474. ACM, 2017.

[252] Nicholay Topin and Manuela Veloso. Generation of policy-level explanations for reinforcement learning. In The Thirty-Third AAAI Conference on
Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium
on Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019, pages 2514–2521. AAAI Press,
2019.

[253] Michael Tsang, Dehua Cheng, Hanpeng Liu, Xue Feng, Eric Zhou, and Yan Liu. Feature interaction interpretability: A case for explaining
ad-recommendation systems via neural interaction detection. In 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa,
Ethiopia, April 26-30, 2020. OpenReview.net, 2020.

[254] Michael Tsang, Hanpeng Liu, Sanjay Purushotham, Pavankumar Murali, and Yan Liu. Neural interaction transparency (NIT): disentangling learned
interactions for improved interpretability. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and
Roman Garnett, editors, Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018,
NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pages 5809–5818, 2018.

[255] Michael Tsang, Sirisha Rambhatla, and Yan Liu. How does this interaction affect me? interpretable attribution for feature interactions. In Hugo
Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Advances in Neural Information Processing
Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

[256] Alex Tseng, Avanti Shrikumar, and Anshul Kundaje. Fourier-transform-based attribution priors improve the interpretability and stability of
deep learning models for genomics. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors,
Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December
6-12, 2020, virtual, 2020.

[257] Ming Tu, Kevin Huang, Guangtao Wang, Jing Huang, Xiaodong He, and Bowen Zhou. Select, answer and explain: Interpretable multi-hop reading
comprehension over multiple documents. In The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative
Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020,
New York, NY, USA, February 7-12, 2020, pages 9073–9080. AAAI Press, 2020.

[258] Berk Ustun and Cynthia Rudin. Optimized risk scores. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’17, page 1125–1134, New York, NY, USA, 2017. Association for Computing Machinery.

[259] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of Machine Learning Research, 9(86):2579–2605, 2008.
[260] Michael Van Lent, William Fisher, and Michael Mancuso. An explainable artificial intelligence system for small-unit tactical behavior. In Proceedings

of the national conference on artificial intelligence, pages 900–907. Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999, 2004.
[261] Ramakrishna Vedantam, Karan Desai, Stefan Lee, Marcus Rohrbach, Dhruv Batra, and Devi Parikh. Probabilistic neural symbolic models for

interpretable visual question answering. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th International Conference
on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA, volume 97 of Proceedings of Machine Learning Research, pages
6428–6437. PMLR, 2019.

[262] Manisha Verma and Debasis Ganguly. LIRME: locally interpretable ranking model explanation. In Benjamin Piwowarski, Max Chevalier, Éric
Gaussier, Yoelle Maarek, Jian-Yun Nie, and Falk Scholer, editors, Proceedings of the 42nd International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR 2019, Paris, France, July 21-25, 2019, pages 1281–1284. ACM, 2019.

[263] Giulia Vilone and Luca Longo. Notions of explainability and evaluation approaches for explainable artificial intelligence. Information Fusion,
76:89–106, 2021.

[264] Andrey Voynov and Artem Babenko. Unsupervised discovery of interpretable directions in the GAN latent space. In Proceedings of the 37th
International Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of Machine Learning Research,
pages 9786–9796. PMLR, 2020.



48 Nauta et al.

[265] Minh N. Vu and My T. Thai. Pgm-explainer: Probabilistic graphical model explanations for graph neural networks. In Hugo Larochelle, Marc’Aurelio
Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Advances in Neural Information Processing Systems 33: Annual Conference
on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

[266] Jörg Wagner, Jan Mathias Köhler, Tobias Gindele, Leon Hetzel, Jakob Thaddäus Wiedemer, and Sven Behnke. Interpretable and fine-grained visual
explanations for convolutional neural networks. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA,
June 16-20, 2019, pages 9097–9107. Computer Vision Foundation / IEEE, 2019.

[267] Nan Wang, Hongning Wang, Yiling Jia, and Yue Yin. Explainable recommendation via multi-task learning in opinionated text data. In Kevyn
Collins-Thompson, Qiaozhu Mei, Brian D. Davison, Yiqun Liu, and Emine Yilmaz, editors, The 41st International ACM SIGIR Conference on Research
& Development in Information Retrieval, SIGIR 2018, Ann Arbor, MI, USA, July 08-12, 2018, pages 165–174. ACM, 2018.

[268] Pei Wang and Nuno Vasconcelos. Deliberative explanations: visualizing network insecurities. In Hanna M. Wallach, Hugo Larochelle, Alina
Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett, editors, Advances in Neural Information Processing Systems 32: Annual
Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pages 1372–1383, 2019.

[269] Pei Wang and Nuno Vasconcelos. SCOUT: self-aware discriminant counterfactual explanations. In 2020 IEEE/CVF Conference on Computer Vision
and Pattern Recognition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020, pages 8978–8987. IEEE, 2020.

[270] Shengjie Wang, Tianyi Zhou, and Jeff A. Bilmes. Bias also matters: Bias attribution for deep neural network explanation. In Kamalika Chaudhuri
and Ruslan Salakhutdinov, editors, Proceedings of the 36th International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach,
California, USA, volume 97 of Proceedings of Machine Learning Research, pages 6659–6667. PMLR, 2019.

[271] Tong Wang. Multi-value rule sets for interpretable classification with feature-efficient representations. In Samy Bengio, Hanna M. Wallach, Hugo
Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett, editors, Advances in Neural Information Processing Systems 31: Annual
Conference on Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pages 10858–10868, 2018.

[272] Tong Wang. Gaining free or low-cost interpretability with interpretable partial substitute. In Kamalika Chaudhuri and Ruslan Salakhutdinov,
editors, Proceedings of the 36th International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA, volume 97 of
Proceedings of Machine Learning Research, pages 6505–6514. PMLR, 2019.

[273] Wei Wang, Christopher Lesner, Alexander Ran, Marko Rukonic, Jason Xue, and Eric Shiu. Using small business banking data for explainable credit
risk scoring. In The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial
Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA,
February 7-12, 2020, pages 13396–13401. AAAI Press, 2020.

[274] Xiang Wang, Xiangnan He, Fuli Feng, Liqiang Nie, and Tat-Seng Chua. TEM: tree-enhanced embedding model for explainable recommendation. In
Pierre-Antoine Champin, Fabien Gandon, Mounia Lalmas, and Panagiotis G. Ipeirotis, editors, Proceedings of the 2018 World Wide Web Conference
on World Wide Web, WWW 2018, Lyon, France, April 23-27, 2018, pages 1543–1552. ACM, 2018.

[275] Xiang Wang, Dingxian Wang, Canran Xu, Xiangnan He, Yixin Cao, and Tat-Seng Chua. Explainable reasoning over knowledge graphs for
recommendation. In The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artificial
Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA,
January 27 - February 1, 2019, pages 5329–5336. AAAI Press, 2019.

[276] Xiting Wang, Yiru Chen, Jie Yang, Le Wu, Zhengtao Wu, and Xing Xie. A reinforcement learning framework for explainable recommendation. In
IEEE International Conference on Data Mining, ICDM 2018, Singapore, November 17-20, 2018, pages 587–596. IEEE Computer Society, 2018.

[277] Yulong Wang, Hang Su, Bo Zhang, and Xiaolin Hu. Interpret neural networks by identifying critical data routing paths. In 2018 IEEE Conference on
Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018, pages 8906–8914. IEEE Computer Society, 2018.

[278] Sandareka Wickramanayake, Wynne Hsu, and Mong-Li Lee. FLEX: faithful linguistic explanations for neural net based model decisions. In The
Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artificial Intelligence Conference, IAAI
2019, The Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019,
pages 2539–2546. AAAI Press, 2019.

[279] Andrew G Wilson, Christoph Dann, Chris Lucas, and Eric P Xing. The human kernel. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and
R. Garnett, editors, Advances in Neural Information Processing Systems, volume 28. Curran Associates, Inc., 2015.

[280] Alexander B Wiltschko, Benjamin Sanchez-Lengeling, Brian Lee, Emily Reif, Jennifer Wei, Kevin James McCloskey, Lucy Colwell, Wesley
Qian, and Yiliu Wang. Evaluating attribution for graph neural networks. In Advances in Neural Information Processing Systems 33, 2020.
https://papers.nips.cc/paper/2020/hash/417fbbf2e9d5a28a855a11894b2e795a-Abstract.html.

[281] Daniel E. Worrall, Stephan J. Garbin, Daniyar Turmukhambetov, and Gabriel J. Brostow. Interpretable transformations with encoder-decoder
networks. In IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017, pages 5737–5746. IEEE Computer
Society, 2017.

[282] Huijun Wu, Chen Wang, Jie Yin, Kai Lu, and Liming Zhu. Sharing deep neural network models with interpretation. In Pierre-Antoine Champin,
Fabien Gandon, Mounia Lalmas, and Panagiotis G. Ipeirotis, editors, Proceedings of the 2018 World Wide Web Conference on World Wide Web, WWW
2018, Lyon, France, April 23-27, 2018, pages 177–186. ACM, 2018.

[283] Mike Wu, Michael C. Hughes, Sonali Parbhoo, Maurizio Zazzi, Volker Roth, and Finale Doshi-Velez. Beyond sparsity: Tree regularization of deep
models for interpretability. In Sheila A. McIlraith and Kilian Q. Weinberger, editors, Proceedings of the Thirty-Second AAAI Conference on Artificial
Intelligence, (AAAI-18), the 30th innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in



A Systematic Review on Evaluating Explainable AI 49

Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018, pages 1670–1678. AAAI Press, 2018.
[284] Mike Wu, Sonali Parbhoo, Michael C. Hughes, Ryan Kindle, Leo A. Celi, Maurizio Zazzi, Volker Roth, and Finale Doshi-Velez. Regional tree

regularization for interpretability in deep neural networks. In The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The
Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial
Intelligence, EAAI 2020, New York, NY, USA, February 7-12, 2020, pages 6413–6421. AAAI Press, 2020.

[285] Weibin Wu, Yuxin Su, Xixian Chen, Shenglin Zhao, Irwin King, Michael R. Lyu, and Yu-Wing Tai. Towards global explanations of convolutional
neural networks with concept attribution. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA,
June 13-19, 2020, pages 8649–8658. IEEE, 2020.

[286] Zhiyong Wu, Yun Chen, Ben Kao, and Qun Liu. Perturbed masking: Parameter-free probing for analyzing and interpreting BERT. In Dan Jurafsky,
Joyce Chai, Natalie Schluter, and Joel R. Tetreault, editors, Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics,
ACL 2020, Online, July 5-10, 2020, pages 4166–4176. Association for Computational Linguistics, 2020.

[287] Ning Xie, Gabrielle Ras, Marcel van Gerven, and Derek Doran. Explainable deep learning: A field guide for the uninitiated. arXiv preprint
arXiv:2004.14545, 2020.

[288] Yiran Xu, Xiaoyin Yang, Lihang Gong, Hsuan-Chu Lin, Tz-Ying Wu, Yunsheng Li, and Nuno Vasconcelos. Explainable object-induced action
decision for autonomous vehicles. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, June
13-19, 2020, pages 9520–9529. IEEE, 2020.

[289] Fan Yang, Mengnan Du, and Xia Hu. Evaluating Explanation Without Ground Truth in Interpretable Machine Learning. arXiv:1907.06831 [cs, stat],
August 2019. arXiv: 1907.06831.

[290] Fan Yang, Ninghao Liu, Suhang Wang, and Xia Hu. Towards interpretation of recommender systems with sorted explanation paths. In IEEE
International Conference on Data Mining, ICDM 2018, Singapore, November 17-20, 2018, pages 667–676. IEEE Computer Society, 2018.

[291] Chih-Kuan Yeh, Cheng-Yu Hsieh, Arun Sai Suggala, David I. Inouye, and Pradeep Ravikumar. On the (in)fidelity and sensitivity of explanations. In
Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett, editors, Advances in Neural
Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver,
BC, Canada, pages 10965–10976, 2019.

[292] Chih-Kuan Yeh, Been Kim, Sercan Ömer Arik, Chun-Liang Li, Tomas Pfister, and Pradeep Ravikumar. On completeness-aware concept-based
explanations in deep neural networks. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors,
Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December
6-12, 2020, virtual, 2020.

[293] Bangjie Yin, Luan Tran, Haoxiang Li, Xiaohui Shen, and Xiaoming Liu. Towards interpretable face recognition. In 2019 IEEE/CVF International
Conference on Computer Vision, ICCV 2019, Seoul, Korea (South), October 27 - November 2, 2019, pages 9347–9356. IEEE, 2019.

[294] Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka Zitnik, and Jure Leskovec. Gnnexplainer: Generating explanations for graph neural networks.
In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett, editors, Advances in Neural
Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver,
BC, Canada, pages 9240–9251, 2019.

[295] Jaemin Yoo and Lee Sael. Edit: Interpreting ensemble models via compact soft decision trees. In Jianyong Wang, Kyuseok Shim, and Xindong Wu,
editors, 2019 IEEE International Conference on Data Mining, ICDM 2019, Beijing, China, November 8-11, 2019, pages 1438–1443. IEEE, 2019.

[296] Haizi Yu and Lav R. Varshney. Towards deep interpretability (MUS-ROVER II): learning hierarchical representations of tonal music. In 5th
International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net,
2017.

[297] Hao Yuan, Yongjun Chen, Xia Hu, and Shuiwang Ji. Interpreting deep models for text analysis via optimization and regularization methods. In The
Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of Artificial Intelligence Conference, IAAI
2019, The Ninth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - February 1, 2019,
pages 5717–5724. AAAI Press, 2019.

[298] Hao Yuan, Jiliang Tang, Xia Hu, and Shuiwang Ji. XGNN: towards model-level explanations of graph neural networks. In Rajesh Gupta, Yan Liu,
Jiliang Tang, and B. Aditya Prakash, editors, KDD ’20: The 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Virtual Event,
CA, USA, August 23-27, 2020, pages 430–438. ACM, 2020.

[299] Jeffrey C. Zemla, Steven Sloman, Christos Bechlivanidis, and David A. Lagnado. Evaluating everyday explanations. Psychonomic Bulletin & Review,
24(5):1488–1500, October 2017.

[300] Wenyuan Zeng, Wenjie Luo, Simon Suo, Abbas Sadat, Bin Yang, Sergio Casas, and Raquel Urtasun. End-to-end interpretable neural motion planner.
In IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019, pages 8660–8669. Computer
Vision Foundation / IEEE, 2019.

[301] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding deep learning (still) requires rethinking
generalization. Commun. ACM, 64(3):107–115, feb 2021.

[302] Hao Zhang, Jiayi Chen, Haotian Xue, and Quanshi Zhang. Towards a Unified Evaluation of Explanation Methods without Ground Truth.
arXiv:1911.09017 [cs, stat], November 2019. arXiv: 1911.09017.



50 Nauta et al.

[303] Quan-shi Zhang and Song-chun Zhu. Visual interpretability for deep learning: a survey. Frontiers of Information Technology & Electronic Engineering,
19(1):27–39, January 2018.

[304] Quanshi Zhang, Ruiming Cao, Feng Shi, Ying Nian Wu, and Song-Chun Zhu. Interpreting CNN knowledge via an explanatory graph. In Sheila A.
McIlraith and Kilian Q. Weinberger, editors, Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th innovative
Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-18), New
Orleans, Louisiana, USA, February 2-7, 2018, pages 4454–4463. AAAI Press, 2018.

[305] Quanshi Zhang, Ruiming Cao, Ying Nian Wu, and Song-Chun Zhu. Growing interpretable part graphs on convnets via multi-shot learning. In
Satinder P. Singh and Shaul Markovitch, editors, Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, February 4-9, 2017, San
Francisco, California, USA, pages 2898–2906. AAAI Press, 2017.

[306] Quanshi Zhang, Ying Nian Wu, and Song-Chun Zhu. Interpretable convolutional neural networks. In 2018 IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018, pages 8827–8836. IEEE Computer Society, 2018.

[307] Quanshi Zhang, Yu Yang, Haotian Ma, and Ying Nian Wu. Interpreting cnns via decision trees. In IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019, pages 6261–6270. Computer Vision Foundation / IEEE, 2019.

[308] Xin Zhang, Armando Solar-Lezama, and Rishabh Singh. Interpreting neural network judgments via minimal, stable, and symbolic corrections.
In Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett, editors, Advances in Neural
Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal,
Canada, pages 4879–4890, 2018.

[309] Yue Zhang and Arti Ramesh. Learning interpretable relational structures of hinge-loss markov random fields. In Sarit Kraus, editor, Proceedings of
the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI 2019, Macao, China, August 10-16, 2019, pages 6050–6056. ijcai.org,
2019.

[310] Jie Zhao, Ziyu Guan, and Huan Sun. Riker: Mining rich keyword representations for interpretable product question answering. In Ankur Teredesai,
Vipin Kumar, Ying Li, Rómer Rosales, Evimaria Terzi, and George Karypis, editors, Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, KDD 2019, Anchorage, AK, USA, August 4-8, 2019, pages 1389–1398. ACM, 2019.

[311] Tiancheng Zhao, Kyusong Lee, and Maxine Eskénazi. Unsupervised discrete sentence representation learning for interpretable neural dialog
generation. In Iryna Gurevych and Yusuke Miyao, editors, Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics,
ACL 2018, Melbourne, Australia, July 15-20, 2018, Volume 1: Long Papers, pages 1098–1107. Association for Computational Linguistics, 2018.

[312] Yuan Zhao and Il Memming Park. Interpretable nonlinear dynamic modeling of neural trajectories. In Daniel D. Lee, Masashi Sugiyama, Ulrike
von Luxburg, Isabelle Guyon, and Roman Garnett, editors, Advances in Neural Information Processing Systems 29: Annual Conference on Neural
Information Processing Systems 2016, December 5-10, 2016, Barcelona, Spain, pages 3333–3341, 2016.

[313] Charles Y. Zheng, Francisco Pereira, Chris I. Baker, and Martin N. Hebart. Revealing interpretable object representations from human behavior. In
7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019.

[314] Jianlong Zhou, Amir H. Gandomi, Fang Chen, and Andreas Holzinger. Evaluating the Quality of Machine Learning Explanations: A Survey on
Methods and Metrics. Electronics, 10(5):593, January 2021. Number: 5 Publisher: Multidisciplinary Digital Publishing Institute.

[315] Wangchunshu Zhou, Jinyi Hu, Hanlin Zhang, Xiaodan Liang, Maosong Sun, Chenyan Xiong, and Jian Tang. Towards interpretable natural
language understanding with explanations as latent variables. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and
Hsuan-Tien Lin, editors, Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020,
NeurIPS 2020, December 6-12, 2020, virtual, 2020.

[316] Zihan Zhou, Mingxuan Sun, and Jianhua Chen. A model-agnostic approach for explaining the predictions on clustered data. In Jianyong Wang,
Kyuseok Shim, and Xindong Wu, editors, 2019 IEEE International Conference on Data Mining, ICDM 2019, Beijing, China, November 8-11, 2019, pages
1528–1533. IEEE, 2019.


	Abstract
	1 Introduction
	1.1 Definitions and Terminology

	2 Related Work: Anecdotal Evidence, Functional Evaluation and User Studies
	2.1 Evaluating Plausibility or Correctness of an Explanation
	2.2 Evaluating With or Without User Studies
	2.3 Discussion: Relation to Our Work

	3 Methodology
	3.1 Identification of Paper Candidates
	3.2 Inclusion and Exclusion
	3.3 Review Protocol: Categorization of Explainable AI Methods
	3.4 Review Protocol: Evaluation of XAI methods

	4 Overall Statistics of Included Papers
	5 Overview of Papers Introducing an XAI Method
	5.1 Categorization and Analysis of XAI Methods
	5.2 Statistics on XAI Evaluation Practices

	6 Quantitative Evaluation Methods for XAI
	6.1 Functionally Evaluating Correctness
	6.2 Functionally Evaluating Output-Completeness
	6.3 Functionally Evaluating Consistency
	6.4 Functionally Evaluating Continuity
	6.5 Functionally Evaluating Contrastivity
	6.6 Functionally Evaluating Covariate Complexity
	6.7 Functionally Evaluating Compactness
	6.8 Functionally Evaluating Compositionality
	6.9 Functionally Evaluating Confidence
	6.10 Functionally Evaluating Context
	6.11 Functionally Evaluating Coherence
	6.12 Functionally Evaluating Controllability
	6.13 Quantitative Evaluation with User Studies

	7 Implications and Research Opportunities
	8 Acknowledgments
	References

