4,639 research outputs found

    The Role of the Internet of Things in Network Resilience

    Get PDF
    Disasters lead to devastating structural damage not only to buildings and transport infrastructure, but also to other critical infrastructure, such as the power grid and communication backbones. Following such an event, the availability of minimal communication services is however crucial to allow efficient and coordinated disaster response, to enable timely public information, or to provide individuals in need with a default mechanism to post emergency messages. The Internet of Things consists in the massive deployment of heterogeneous devices, most of which battery-powered, and interconnected via wireless network interfaces. Typical IoT communication architectures enables such IoT devices to not only connect to the communication backbone (i.e. the Internet) using an infrastructure-based wireless network paradigm, but also to communicate with one another autonomously, without the help of any infrastructure, using a spontaneous wireless network paradigm. In this paper, we argue that the vast deployment of IoT-enabled devices could bring benefits in terms of data network resilience in face of disaster. Leveraging their spontaneous wireless networking capabilities, IoT devices could enable minimal communication services (e.g. emergency micro-message delivery) while the conventional communication infrastructure is out of service. We identify the main challenges that must be addressed in order to realize this potential in practice. These challenges concern various technical aspects, including physical connectivity requirements, network protocol stack enhancements, data traffic prioritization schemes, as well as social and political aspects

    Next Generation Cloud Computing: New Trends and Research Directions

    Get PDF
    The landscape of cloud computing has significantly changed over the last decade. Not only have more providers and service offerings crowded the space, but also cloud infrastructure that was traditionally limited to single provider data centers is now evolving. In this paper, we firstly discuss the changing cloud infrastructure and consider the use of infrastructure from multiple providers and the benefit of decentralising computing away from data centers. These trends have resulted in the need for a variety of new computing architectures that will be offered by future cloud infrastructure. These architectures are anticipated to impact areas, such as connecting people and devices, data-intensive computing, the service space and self-learning systems. Finally, we lay out a roadmap of challenges that will need to be addressed for realising the potential of next generation cloud systems.Comment: Accepted to Future Generation Computer Systems, 07 September 201

    Smartphone-Based Self Rescue System for Disaster Rescue

    Get PDF
    Recent ubiquitous earthquakes have been leading to mass destruction of electrical power and cellular infrastructures, and deprive the innocent lives across the world. Due to the wide-area earthquake disaster, unavailable power and communication infrastructure, limited man-power and resources, traditional rescue operations and equipment are inefficient and time-consuming, leading to the golden hours missed. With the increasing proliferation of powerful wireless devices, like smartphones, they can be assumed to be abundantly available among the disaster victims and can act as valuable resources to coordinate disaster rescue operations. In this paper, we propose a smartphone-based self-rescue system, also referred to as RescueMe, to assist the operations of disaster rescue and relief. The basic idea of RescueMe is that a set of smartphones carried by survivors trapped or buried under the collapsed infrastructure forms into a one-hop network and sends out distress signals in an energy-efficient manner to nearby rescue crews to assist rescue operations. We evaluate the proposed approach through extensive simulation experiments and compare its performance with the existing scheme TeamPhone. The simulation results show that the proposed approach can significantly reduce the schedule vacancy of broadcasting distress signals and improve the discovery probability with very little sacrifice of network lifetime, and indicate a potentially viable approach to expedite disaster rescue and relief operations

    How Mobile Devices are Transforming Disaster Relief and Public Safety

    Get PDF
    With its growing usage, mobile technology is greatly improving disaster relief and public safety efforts. Countries around the world face threats from natural disasters, climate change, civil unrest, terrorist attacks, and criminal activities, among others. Mobile devices, tablets, and smart phones enable emergency providers and the general public to manage these challenges and mitigate public safety concerns.In this paper, part of the Brookings Mobile Economy Project, we focus on how mobile technology provides an early warning system, aids in emergency coordination, and improves public communications. In particular, we review how mobile devices assist with public safety, disaster planning, and crisis response. We explain how these devices are instrumental in the design and functioning of integrated, multi-layered communications networks. We demonstrate how they have helped save lives and ameliorate human suffering throughout the world
    • …
    corecore