3 research outputs found

    Network-based video freeze detection and prediction in HTTP adaptive streaming

    No full text
    Given the popularity of HTTP adaptive streaming (HAS) technology for media delivery over mobile and fixed networks, the clients Quality of Experience (QoE) for HAS video sessions is of particular interest for network providers and Content Delivery Network (CDN) operators. Despite that, network providers are not able to directly obtain QoE-relevant metrics such as video freezes, initial buffering time, and the frequency of quality switches from the client. This paper proposes a scalable machine learning (ML) based scheme that offline detects and online predicts video freezes using a few features extracted from the network-based monitoring data, i.e., a sequence of HTTP GET requests sent from the video client. We determine the discriminative features for detecting video freezes based on multi-scale winch:11gs using the criterion of information gain (IG). Four traditional classifiers are investigated and the C4.5 decision tree is selected because of its simplicity, scalability, accuracy, and interpretability. Our approach for session based offline freeze detection is evaluated on the Apple HTTP Live Streaming video sessions obtained from a number of operational CDN nodes and on the traces of Microsoft Smooth Streaming video sessions acquired in a controlled lab environment. Experimental results show that, even with the disturbance of user interactivity, an accuracy of about 91% can be obtained for the detection of a video freeze, a long video freeze, and multiple video freezes. The experiments for the online freeze prediction show that more than 30% of the video freezes can be foreseen one segment in advance. (C) 2016 Published by Elsevier B.V

    Machine Learning Prediction Approach to Enhance Congestion Control in 5G IoT Environment

    Full text link
    [EN] The 5G network is a next-generation wireless form of communication and the latest mobile technology. In practice, 5G utilizes the Internet of Things (IoT) to work in high-tra_ c networks with multiple nodes/ sensors in an attempt to transmit their packets to a destination simultaneously, which is a characteristic of IoT applications. Due to this, 5G o_ ers vast bandwidth, low delay, and extremely high data transfer speed. Thus, 5G presents opportunities and motivations for utilizing next-generation protocols, especially the stream control transmission protocol (SCTP). However, the congestion control mechanisms of the conventional SCTP negatively influence overall performance. Moreover, existing mechanisms contribute to reduce 5G and IoT performance. Thus, a new machine learning model based on a decision tree (DT) algorithm is proposed in this study to predict optimal enhancement of congestion control in the wireless sensors of 5G IoT networks. The model was implemented on a training dataset to determine the optimal parametric setting in a 5G environment. The dataset was used to train the machine learning model and enable the prediction of optimal alternatives that can enhance the performance of the congestion control approach. The DT approach can be used for other functions, especially prediction and classification. DT algorithms provide graphs that can be used by any user to understand the prediction approach. The DT C4.5 provided promising results, with more than 92% precision and recall.Najm, IA.; Hamoud, AK.; Lloret, J.; Bosch Roig, I. (2019). Machine Learning Prediction Approach to Enhance Congestion Control in 5G IoT Environment. Electronics. 8(6):1-23. https://doi.org/10.3390/electronics8060607S12386Rahem, A. A. T., Ismail, M., Najm, I. A., & Balfaqih, M. (2017). Topology sense and graph-based TSG: efficient wireless ad hoc routing protocol for WANET. Telecommunication Systems, 65(4), 739-754. doi:10.1007/s11235-016-0242-7Aalsalem, M. Y., Khan, W. Z., Gharibi, W., Khan, M. K., & Arshad, Q. (2018). Wireless Sensor Networks in oil and gas industry: Recent advances, taxonomy, requirements, and open challenges. Journal of Network and Computer Applications, 113, 87-97. doi:10.1016/j.jnca.2018.04.004Sunny, A., Panchal, S., Vidhani, N., Krishnasamy, S., Anand, S. V. R., Hegde, M., … Kumar, A. (2017). A generic controller for managing TCP transfers in IEEE 802.11 infrastructure WLANs. Journal of Network and Computer Applications, 93, 13-26. doi:10.1016/j.jnca.2017.05.006Jain, R. (1990). Congestion control in computer networks: issues and trends. IEEE Network, 4(3), 24-30. doi:10.1109/65.56532Kafi, M. A., Djenouri, D., Ben-Othman, J., & Badache, N. (2014). Congestion Control Protocols in Wireless Sensor Networks: A Survey. IEEE Communications Surveys & Tutorials, 16(3), 1369-1390. doi:10.1109/surv.2014.021714.00123Floyd, S. (2000). Congestion Control Principles. doi:10.17487/rfc2914Qazi, I. A., & Znati, T. (2011). On the design of load factor based congestion control protocols for next-generation networks. Computer Networks, 55(1), 45-60. doi:10.1016/j.comnet.2010.07.010Katabi, D., Handley, M., & Rohrs, C. (2002). Congestion control for high bandwidth-delay product networks. ACM SIGCOMM Computer Communication Review, 32(4), 89-102. doi:10.1145/964725.633035Wang, Y., Rozhnova, N., Narayanan, A., Oran, D., & Rhee, I. (2013). An improved hop-by-hop interest shaper for congestion control in named data networking. ACM SIGCOMM Computer Communication Review, 43(4), 55-60. doi:10.1145/2534169.2491233Mirza, M., Sommers, J., Barford, P., & Zhu, X. (2010). A Machine Learning Approach to TCP Throughput Prediction. IEEE/ACM Transactions on Networking, 18(4), 1026-1039. doi:10.1109/tnet.2009.2037812Taherkhani, N., & Pierre, S. (2016). Centralized and Localized Data Congestion Control Strategy for Vehicular Ad Hoc Networks Using a Machine Learning Clustering Algorithm. IEEE Transactions on Intelligent Transportation Systems, 17(11), 3275-3285. doi:10.1109/tits.2016.2546555Fadlullah, Z. M., Tang, F., Mao, B., Kato, N., Akashi, O., Inoue, T., & Mizutani, K. (2017). State-of-the-Art Deep Learning: Evolving Machine Intelligence Toward Tomorrow’s Intelligent Network Traffic Control Systems. IEEE Communications Surveys & Tutorials, 19(4), 2432-2455. doi:10.1109/comst.2017.2707140Gonzalez-Landero, F., Garcia-Magarino, I., Lacuesta, R., & Lloret, J. (2018). PriorityNet App: A Mobile Application for Establishing Priorities in the Context of 5G Ultra-Dense Networks. IEEE Access, 6, 14141-14150. doi:10.1109/access.2018.2811900Lloret, J., Parra, L., Taha, M., & Tomás, J. (2017). An architecture and protocol for smart continuous eHealth monitoring using 5G. Computer Networks, 129, 340-351. doi:10.1016/j.comnet.2017.05.018Khan, I., Zafar, M., Jan, M., Lloret, J., Basheri, M., & Singh, D. (2018). Spectral and Energy Efficient Low-Overhead Uplink and Downlink Channel Estimation for 5G Massive MIMO Systems. Entropy, 20(2), 92. doi:10.3390/e20020092Elappila, M., Chinara, S., & Parhi, D. R. (2018). Survivable Path Routing in WSN for IoT applications. Pervasive and Mobile Computing, 43, 49-63. doi:10.1016/j.pmcj.2017.11.004Singh, K., Singh, K., Son, L. H., & Aziz, A. (2018). Congestion control in wireless sensor networks by hybrid multi-objective optimization algorithm. Computer Networks, 138, 90-107. doi:10.1016/j.comnet.2018.03.023Shelke, M., Malhotra, A., & Mahalle, P. N. (2017). Congestion-Aware Opportunistic Routing Protocol in Wireless Sensor Networks. Smart Innovation, Systems and Technologies, 63-72. doi:10.1007/978-981-10-5544-7_7Godoy, P. D., Cayssials, R. L., & García Garino, C. G. (2018). Communication channel occupation and congestion in wireless sensor networks. Computers & Electrical Engineering, 72, 846-858. doi:10.1016/j.compeleceng.2017.12.049Najm, I. A., Ismail, M., Lloret, J., Ghafoor, K. Z., Zaidan, B. B., & Rahem, A. A. T. (2015). Improvement of SCTP congestion control in the LTE-A network. Journal of Network and Computer Applications, 58, 119-129. doi:10.1016/j.jnca.2015.09.003Najm, I. A., Ismail, M., & Abed, G. A. (2014). High-Performance Mobile Technology LTE-A using the Stream Control Transmission Protocol: A Systematic Review and Hands-on Analysis. Journal of Applied Sciences, 14(19), 2194-2218. doi:10.3923/jas.2014.2194.2218Katuwal, R., Suganthan, P. N., & Zhang, L. (2018). An ensemble of decision trees with random vector functional link networks for multi-class classification. Applied Soft Computing, 70, 1146-1153. doi:10.1016/j.asoc.2017.09.020Gómez, S. E., Martínez, B. C., Sánchez-Esguevillas, A. J., & Hernández Callejo, L. (2017). Ensemble network traffic classification: Algorithm comparison and novel ensemble scheme proposal. Computer Networks, 127, 68-80. doi:10.1016/j.comnet.2017.07.018Hasan, M., Hossain, E., & Niyato, D. (2013). Random access for machine-to-machine communication in LTE-advanced networks: issues and approaches. IEEE Communications Magazine, 51(6), 86-93. doi:10.1109/mcom.2013.6525600Liang, D., Zhang, Z., & Peng, M. (2015). Access Point Reselection and Adaptive Cluster Splitting-Based Indoor Localization in Wireless Local Area Networks. IEEE Internet of Things Journal, 2(6), 573-585. doi:10.1109/jiot.2015.2453419Park, H., Haghani, A., Samuel, S., & Knodler, M. A. (2018). Real-time prediction and avoidance of secondary crashes under unexpected traffic congestion. Accident Analysis & Prevention, 112, 39-49. doi:10.1016/j.aap.2017.11.025Shu, J., Liu, S., Liu, L., Zhan, L., & Hu, G. (2017). Research on Link Quality Estimation Mechanism for Wireless Sensor Networks Based on Support Vector Machine. Chinese Journal of Electronics, 26(2), 377-384. doi:10.1049/cje.2017.01.013Riekstin, A. C., Januário, G. C., Rodrigues, B. B., Nascimento, V. T., Carvalho, T. C. M. B., & Meirosu, C. (2016). Orchestration of energy efficiency capabilities in networks. Journal of Network and Computer Applications, 59, 74-87. doi:10.1016/j.jnca.2015.06.015Adi, E., Baig, Z., & Hingston, P. (2017). Stealthy Denial of Service (DoS) attack modelling and detection for HTTP/2 services. Journal of Network and Computer Applications, 91, 1-13. doi:10.1016/j.jnca.2017.04.015Stimpfling, T., Bélanger, N., Cherkaoui, O., Béliveau, A., Béliveau, L., & Savaria, Y. (2017). Extensions to decision-tree based packet classification algorithms to address new classification paradigms. Computer Networks, 122, 83-95. doi:10.1016/j.comnet.2017.04.021Singh, D., Nigam, S. P., Agrawal, V. P., & Kumar, M. (2016). Vehicular traffic noise prediction using soft computing approach. Journal of Environmental Management, 183, 59-66. doi:10.1016/j.jenvman.2016.08.053Xia, Y., Chen, W., Liu, X., Zhang, L., Li, X., & Xiang, Y. (2017). Adaptive Multimedia Data Forwarding for Privacy Preservation in Vehicular Ad-Hoc Networks. IEEE Transactions on Intelligent Transportation Systems, 18(10), 2629-2641. doi:10.1109/tits.2017.2653103Tariq, F., & Baig, S. (2017). Machine Learning Based Botnet Detection in Software Defined Networks. International Journal of Security and Its Applications, 11(11), 1-12. doi:10.14257/ijsia.2017.11.11.01Wu, T., Petrangeli, S., Huysegems, R., Bostoen, T., & De Turck, F. (2017). Network-based video freeze detection and prediction in HTTP adaptive streaming. Computer Communications, 99, 37-47. doi:10.1016/j.comcom.2016.08.005Pham, T. N. D., & Yeo, C. K. (2018). Adaptive trust and privacy management framework for vehicular networks. Vehicular Communications, 13, 1-12. doi:10.1016/j.vehcom.2018.04.006Mohamed, M. F., Shabayek, A. E.-R., El-Gayyar, M., & Nassar, H. (2019). An adaptive framework for real-time data reduction in AMI. Journal of King Saud University - Computer and Information Sciences, 31(3), 392-402. doi:10.1016/j.jksuci.2018.02.012Louvieris, P., Clewley, N., & Liu, X. (2013). Effects-based feature identification for network intrusion detection. Neurocomputing, 121, 265-273. doi:10.1016/j.neucom.2013.04.038Verma, P. K., Verma, R., Prakash, A., Agrawal, A., Naik, K., Tripathi, R., … Abogharaf, A. (2016). Machine-to-Machine (M2M) communications: A survey. Journal of Network and Computer Applications, 66, 83-105. doi:10.1016/j.jnca.2016.02.016Hamoud, A. K., Hashim, A. S., & Awadh, W. A. (2018). Predicting Student Performance in Higher Education Institutions Using Decision Tree Analysis. International Journal of Interactive Multimedia and Artificial Intelligence, 5(2), 26. doi:10.9781/ijimai.2018.02.004Lavanya, D. (2012). Ensemble Decision Tree Classifier For Breast Cancer Data. International Journal of Information Technology Convergence and Services, 2(1), 17-24. doi:10.5121/ijitcs.2012.2103Polat, K., & Güneş, S. (2007). Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform. Applied Mathematics and Computation, 187(2), 1017-1026. doi:10.1016/j.amc.2006.09.022Cayirci, E., Tezcan, H., Dogan, Y., & Coskun, V. (2006). Wireless sensor networks for underwater survelliance systems. Ad Hoc Networks, 4(4), 431-446. doi:10.1016/j.adhoc.2004.10.008Mezzavilla, M., Zhang, M., Polese, M., Ford, R., Dutta, S., Rangan, S., & Zorzi, M. (2018). End-to-End Simulation of 5G mmWave Networks. IEEE Communications Surveys & Tutorials, 20(3), 2237-2263. doi:10.1109/comst.2018.282888
    corecore