20,502 research outputs found

    QoS in LEO satellite networks with multipacket reception

    Get PDF
    Dissertação apresentada para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores, pela Universidade Nova de Lisboa, Faculdade de Ciências e TecnologiaLow Earth Orbit (LEO) satellite networks can improve terrestrial wireless networks to allow global broadband services for Mobile Terminals (MT), regardless of the users' location. In this context, hybrid telecommunication systems combining satellites with Long Term Evolution (LTE) networks, like the LightSquared technology, are intended to provide ubiquitous high-speed services. This dissertation analyses the performance of a random access protocol that uses Hybrid Network-assisted Diversity Multiple Access (H-NDMA), for a LEO satellite system network, named by Satellite Random NDMA (SR-NDMA). The protocol also considers a Single Carrier-Frequency Domain Equalization (SC-FDE) scheme for the uplink transmission and a Multipacket Reception (MPR) receiver. In this scenario, the transmission of data packets between MTs and the Base Station (BS) is made through random access and schedule access slots, organized into super-frames with the duration of a Round Trip Time (RTT). A SR-NDMA simulator is implemented to measure the system performance in matters of throughput, energy consumption, system delay and also the protocol capacity to meet Quality of Service (QoS) requirements. A set of simulations tests were made with a random Poisson process tra c generation to validate the analytical model. The capacity to ful l the QoS requirements of a real-time tra c class was also tested.FCT/MEC: MPSat - PTDC/EEA-TEL/099074/2008, OPPORTUNISTIC CR - PTDC/EEA-TEL/115981/2009, Femtocells - PTDC/EEA-TEL/120666/2010 e ADIN - PTDC/EEI-TEL/2990/201

    Distributed space-time coding for two-way wireless relay networks

    Get PDF
    In this paper, we consider distributed space-time coding for two-way wireless relay networks, where communication between two terminals is assisted by relay nodes. Relaying protocols using two, three, and four time slots are proposed. The protocols using four time slots are the traditional amplify-and-forward (AF) and decode-and-forward (DF) protocols, which do not consider the property of the two-way traffic. A new class of relaying protocols, termed as partial decode-and-forward (PDF), is developed for the two time slots transmission, where each relay first removes part of the noise before sending the signal to the two terminals. Protocols using three time slots are proposed to compensate the fact that the two time slots protocols cannot make use of direct transmission between the two terminals. For all protocols, after processing their received signals, the relays encode the resulting signals using a distributed linear dispersion (LD) code. The proposed AF protocols are shown to achieve the diversity order of min{N,K}(1- (log log P/log P)), where N is the number of relays, P is the total power of the network, and K is the number of symbols transmitted during each time slot. When random unitary matrix is used for LD code, the proposed PDF protocols resemble random linear network coding, where the former operates on the unitary group and the latter works on the finite field. Moreover, PDF achieves the diversity order of min{N,K} but the conventional DF can only achieve the diversity order of 1. Finally, we find that two time slots protocols also have advantages over four-time-slot protocols in media access control (MAC) layer

    Downlink and Uplink Intelligent Reflecting Surface Aided Networks: NOMA and OMA

    Full text link
    Intelligent reflecting surfaces (IRSs) are envisioned to provide reconfigurable wireless environments for future communication networks. In this paper, both downlink and uplink IRS-aided non-orthogonal multiple access (NOMA) and orthogonal multiple access (OMA) networks are studied, in which an IRS is deployed to enhance the coverage by assisting a cell-edge user device (UD) to communicate with the base station (BS). To characterize system performance, new channel statistics of the BS-IRS-UD link with Nakagami-mm fading are investigated. For each scenario, the closed-form expressions for the outage probability and ergodic rate are derived. To gain further insight, the diversity order and high signal-to-noise ratio (SNR) slope for each scenario are obtained according to asymptotic approximations in the high-SNR regime. It is demonstrated that the diversity order is affected by the number of IRS reflecting elements and Nakagami fading parameters, but the high-SNR slope is not related to these parameters. Simulation results validate our analysis and reveal the superiority of the IRS over the full-duplex decode-and-forward relay.Comment: Accepted for publication in the IEEE Transactions on Wireless Communication

    Optimization Framework and Graph-Based Approach for Relay-Assisted Bidirectional OFDMA Cellular Networks

    Full text link
    This paper considers a relay-assisted bidirectional cellular network where the base station (BS) communicates with each mobile station (MS) using OFDMA for both uplink and downlink. The goal is to improve the overall system performance by exploring the full potential of the network in various dimensions including user, subcarrier, relay, and bidirectional traffic. In this work, we first introduce a novel three-time-slot time-division duplexing (TDD) transmission protocol. This protocol unifies direct transmission, one-way relaying and network-coded two-way relaying between the BS and each MS. Using the proposed three-time-slot TDD protocol, we then propose an optimization framework for resource allocation to achieve the following gains: cooperative diversity (via relay selection), network coding gain (via bidirectional transmission mode selection), and multiuser diversity (via subcarrier assignment). We formulate the problem as a combinatorial optimization problem, which is NP-complete. To make it more tractable, we adopt a graph-based approach. We first establish the equivalence between the original problem and a maximum weighted clique problem in graph theory. A metaheuristic algorithm based on any colony optimization (ACO) is then employed to find the solution in polynomial time. Simulation results demonstrate that the proposed protocol together with the ACO algorithm significantly enhances the system total throughput.Comment: 27 pages, 8 figures, 2 table

    A Survey on Wireless Security: Technical Challenges, Recent Advances and Future Trends

    Full text link
    This paper examines the security vulnerabilities and threats imposed by the inherent open nature of wireless communications and to devise efficient defense mechanisms for improving the wireless network security. We first summarize the security requirements of wireless networks, including their authenticity, confidentiality, integrity and availability issues. Next, a comprehensive overview of security attacks encountered in wireless networks is presented in view of the network protocol architecture, where the potential security threats are discussed at each protocol layer. We also provide a survey of the existing security protocols and algorithms that are adopted in the existing wireless network standards, such as the Bluetooth, Wi-Fi, WiMAX, and the long-term evolution (LTE) systems. Then, we discuss the state-of-the-art in physical-layer security, which is an emerging technique of securing the open communications environment against eavesdropping attacks at the physical layer. We also introduce the family of various jamming attacks and their counter-measures, including the constant jammer, intermittent jammer, reactive jammer, adaptive jammer and intelligent jammer. Additionally, we discuss the integration of physical-layer security into existing authentication and cryptography mechanisms for further securing wireless networks. Finally, some technical challenges which remain unresolved at the time of writing are summarized and the future trends in wireless security are discussed.Comment: 36 pages. Accepted to Appear in Proceedings of the IEEE, 201

    Cellular Underwater Wireless Optical CDMA Network: Potentials and Challenges

    Get PDF
    Underwater wireless optical communications is an emerging solution to the expanding demand for broadband links in oceans and seas. In this paper, a cellular underwater wireless optical code division multiple-access (UW-OCDMA) network is proposed to provide broadband links for commercial and military applications. The optical orthogonal codes (OOC) are employed as signature codes of underwater mobile users. Fundamental key aspects of the network such as its backhaul architecture, its potential applications and its design challenges are presented. In particular, the proposed network is used as infrastructure of centralized, decentralized and relay-assisted underwater sensor networks for high-speed real-time monitoring. Furthermore, a promising underwater localization and positioning scheme based on this cellular network is presented. Finally, probable design challenges such as cell edge coverage, blockage avoidance, power control and increasing the network capacity are addressed.Comment: 11 pages, 10 figure
    • …
    corecore