10 research outputs found

    Dynamic Modeling for Intelligent Transportation System Applications

    Get PDF
    Special Issue on Dynamic Modeling for Intelligent Transportation System Applicationspostprin

    Vehicle Travel Time Estimation Using Sequence Prediction

    Get PDF
    This paper proposes a region-based travel time and traffic speed prediction method using sequence prediction. Floating Car Data collected from 8,317 vehicles during 34 days are used for evaluation purposes. Twelve districts are chosen and the spatio-temporal non-linear relations are learned with Recurrent Neural Networks. Time estimation of the total trip is solved by travel time estimation of the divided sub-trips, which are constituted between two consecutive GNSS measurement data. The travel time and final speed of sub-trips are learned with Long Short-term Memory cells using sequence prediction. A sequence is defined by including the day of the week meta-information, dynamic information about vehicle route start and end positions, and average travel speed of the road segment that has been traversed by the vehicle. The final travel time is estimated for this sequence. The sequence-based prediction shows promising results, outperforms function mapping and non-parametric linear velocity change based methods in terms of root-mean-square error and mean absolute error metrics.</p

    Adaptive intelligent traffic control systems for improving traffic quality and congestion in smart cities

    Get PDF
    A systematic review was undertaken to examine the solutions available for traffic congestion and associated problems in smart cities. Google Scholar and Google were used as search engines, leading to the final selection of 35 eligible papers for inclusion in this review, after a serious of screening based on definite criteria. Intelligent transport systems were found to be the most suitable solution to traffic congestion and associated problems in smart cities. Certain models and frameworks of smart cities include smart mobility and transport management systems. These can be approximated to intelligent transport systems. True intelligent transport systems are infrastructure-based or intelligent vehicle based or more preferably, a combination of both. The Internet of Things and cloud computing should be built into the system as they enable the operation of smart transport networks. Some methods of designing traffic control systems combining both Eulerian and Lagrangian approaches have been discussed for the possibility of using any of them to design a new automatic traffic monitoring and control system for smart cities. The practical implication of this research is that it can improve quality of life of people by minimizing traffic congestion. Limitations of this paper include this being a systematic review, availability of very few papers and not considering adaptive intelligent traffic control systems. Explanations for these limitations have been provide

    Updating of travel behavior parameters and estimation of vehicle trip-chain data based on plate scanning

    Get PDF
    This article proposes a maximum-likelihood method to update travel behavior model parameters and estimate vehicle trip chain based on plate scanning. The information from plate scanning consists of the vehicle passing time and sequence of scanned vehicles along a series of plate scanning locations (sensor locations installed on road network). The article adopts the hierarchical travel behavior decision model, in which the upper tier is an activity pattern generation model, and the lower tier is a destination and route choice model. The activity pattern is an individual profile of daily performed activities. To obtain reliable estimation results, the sensor location schemes for predicting trip chaining are proposed. The maximum-likelihood estimation problem based on plate scanning is formulated to update model parameters. This problem is solved by the expectation-maximization (EM) algorithm. The model and algorithm are then tested with simulated plate scanning data in a modified Sioux Falls network. The results illustrate the efficiency of the model and its potential for an application to large and complex network cases

    A Novel Approach for Mixed Manual/Connected Automated Freeway Traffic Management

    Get PDF
    Freeway traffic management and control often rely on input from fixed-point sensors. A sufficiently high sensor density is required to ensure data reliability and accuracy, which results in high installation and maintenance costs. Moreover, fixed-point sensors encounter difficulties to provide spatiotemporally and wide-ranging information due to the limited observable area. This research exploits the utilization of connected automated vehicles (CAVs) as an alternative data source for freeway traffic management. To handle inherent uncertainty associated with CAV data, we develop an interval type 2 fuzzy logic-based variable speed limit (VSL) system for mixed traffic. The simulation results demonstrate that when more 10% CAVs are deployed, the performance of the proposed CAV-based system can approach that of the detector-based system. It is demonstrated in addition that the introduction of CAVs may make VSL obsolete at very high CAV-equipment rates

    Automated Incident Detection Using Real-Time Floating Car Data

    Get PDF

    Traffic State Estimation Using Connected Vehicles and Stationary Detectors

    Get PDF
    corecore