10 research outputs found

    Bi-velocity discrete particle swarm optimization and its application to multicast routing problem in communication networks

    Get PDF
    This paper proposes a novel bi-velocity discrete particle swarm optimization (BVDPSO) approach and extends its application to the NP-complete multicast routing problem (MRP). The main contribution is the extension of PSO from continuous domain to the binary or discrete domain. Firstly, a novel bi-velocity strategy is developed to represent possibilities of each dimension being 1 and 0. This strategy is suitable to describe the binary characteristic of the MRP where 1 stands for a node being selected to construct the multicast tree while 0 stands for being otherwise. Secondly, BVDPSO updates the velocity and position according to the learning mechanism of the original PSO in continuous domain. This maintains the fast convergence speed and global search ability of the original PSO. Experiments are comprehensively conducted on all of the 58 instances with small, medium, and large scales in the OR-library (Operation Research Library). The results confirm that BVDPSO can obtain optimal or near-optimal solutions rapidly as it only needs to generate a few multicast trees. BVDPSO outperforms not only several state-of-the-art and recent heuristic algorithms for the MRP problems, but also algorithms based on GA, ACO, and PSO

    Periodic Event-Triggered Sampling and Dual-Rate Control for a Wireless Networked Control System With Applications to UAVs

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permissíon from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertisíng or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works."[EN] In this paper, periodic event-triggered sampling and dual-rate control techniques are integrated in a wireless networked control system (WNCS), where time-varying network-induced delays and packet disorder are present. Compared to the conventional time-triggered sampling paradigm, the control solution is able to considerably reduce network utilization (number of transmissions), while retaining a satisfactory control performance. Stability for the proposed WNCS is ensured using linear matrix inequalities. Simulation results show the main benefits of the control approach, which are experimentally validated by means of an unmanned-aerial-vehicle-based test-bed platform.This work was supported in part by the European Commission as part of Project H2020-SEC-2016-2017-Topic: SEC-20-BES-2016 (Id: 740736)-"C2 Advanced Multi-domain Environment and Live Observation Technologies," in part by the European Regional Development Fund as part of OPZuid 2014-2020 under the Drone Safety Cluster project, in part by the Innovational Research Incentives Scheme under the VICI Grant "Wireless control systems: A new frontier in automation" (No. 11382) awarded by The Netherlands Organization for Scientific Research Applied and Engineering Sciences, and in part by the Ministerio de Economia y Competitividad, Spain, under Project FPU15/02008.Cuenca, Á.; Antunes, D.; Castillo-Frasquet, A.; García Gil, PJ.; Asadi Khashooei, B.; Heemels, W. (2019). Periodic Event-Triggered Sampling and Dual-Rate Control for a Wireless Networked Control System With Applications to UAVs. IEEE Transactions on Industrial Electronics. 66(4):3157-3166. https://doi.org/10.1109/TIE.2018.2850018S3157316666

    A novel robust predictive control system over imperfect networks

    Get PDF
    This paper aims to study on feedback control for a networked system with both uncertain delays, packet dropouts and disturbances. Here, a so-called robust predictive control (RPC) approach is designed as follows: 1- delays and packet dropouts are accurately detected online by a network problem detector (NPD); 2- a so-called PI-based neural network grey model (PINNGM) is developed in a general form for a capable of forecasting accurately in advance the network problems and the effects of disturbances on the system performance; 3- using the PINNGM outputs, a small adaptive buffer (SAB) is optimally generated on the remote side to deal with the large delays and/or packet dropouts and, therefore, simplify the control design; 4- based on the PINNGM and SAB, an adaptive sampling-based integral state feedback controller (ASISFC) is simply constructed to compensate the small delays and disturbances. Thus, the steady-state control performance is achieved with fast response, high adaptability and robustness. Case studies are finally provided to evaluate the effectiveness of the proposed approach

    Robust Stability and Design of State Feedback Controller for Straightforward Active Queue Management

    Get PDF
    The straightforward active queue management (AQMAQM), which is based on the prediction of arrival rate is investigated by means of state-space approach. We formulate the feedback control design problem for linearized system of additive increase multiplicative decrease (AIMDAIMD) dynamic models as state-space model. Then the Lyapunov-Krasovskii method is provided to achieve the robust stability and sufficient stabilization condition and afterwards the term of linear inequality matrix (LMILMI) is used to show the results. We present the simulation results and show the superiority of our proposed method to other control mechanisms

    Delay-independent dual-rate PID controller for a packet-based networked control system

    Full text link
    [EN] In this paper, a novel delay-independent control structure for a networked control system (NCS) is proposed, where packet-based control strategies with predictor-based and dual-rate control techniques are integrated. The control solution is able to cope with some networked communication problems such as time-varying delays, packet dropouts and packet disorder. In addition, the proposed approach enables to reduce network load, and usage of connected devices, while maintaining a satisfactory control performance. As a delay-independent control solution, no network-induced delay measurement is needed for controller implementation. In addition, the control scheme is applicable to open-loop unstable plants. Control system stability is ensured in terms of linear matrix inequalities (LMIs). Simulation results show the main benefits of the control approach, which are experimentally validated by means of a Cartesian-robot-based test-bed platform. (C) 2019 Elsevier Inc. All rights reserved.This work is funded by European Commission as part of Project H2020-SEC-2016-2017, Topic: SEC-20-BES-2016 Id: 740736 C2 Advanced Multi-domain Environment and Live Observation Technologies (CAMELOT). Part WP5 supported by Tekever ASDS, Thales Research & Technology, Viasat Antenna Systems, Universitat Politècnica de València, Fundação da Faculdade de Ciências da Universidade de Lisboa, Ministério da Defesa Nacional Marinha Portuguesa, Ministério da Administração Interna Guarda Nacional Republicana.Alcaina-Acosta, JJ.; Cuenca, Á.; Salt Llobregat, JJ.; Casanova Calvo, V.; Pizá, R. (2019). Delay-independent dual-rate PID controller for a packet-based networked control system. Information Sciences. 484:27-43. https://doi.org/10.1016/j.ins.2019.01.059S274348

    Trade-offs Between Performance, Data Rate and Transmission Delay in Networked Control Systems

    Get PDF
    corecore