35,683 research outputs found

    Network protection with guaranteed recovery times using recovery domains

    Get PDF
    We consider the problem of providing network protection that guarantees the maximum amount of time that flow can be interrupted after a failure. This is in contrast to schemes that offer no recovery time guarantees, such as IP rerouting, or the prevalent local recovery scheme of Fast ReRoute, which often over-provisions resources to meet recovery time constraints. To meet these recovery time guarantees, we provide a novel and flexible solution by partitioning the network into failure-independent “recovery domains”, where within each domain, the maximum amount of time to recover from a failure is guaranteed. We show the recovery domain problem to be NP-Hard, and develop an optimal solution in the form of an MILP for both the case when backup capacity can and cannot be shared. This provides protection with guaranteed recovery times using up to 45% less protection resources than local recovery. We demonstrate that the network-wide optimal recovery domain solution can be decomposed into a set of easier to solve subproblems. This allows for the development of flexible and efficient solutions, including an optimal algorithm using Lagrangian relaxation, which simulations show to converge rapidly to an optimal solution. Additionally, an algorithm is developed for when backup sharing is allowed. For dynamic arrivals, this algorithm performs better than the solution that tries to greedily optimize for each incoming demand.National Science Foundation (U.S.) (NSF grant CNS-1017800)National Science Foundation (U.S.) (grant CNS-0830961)United States. Defense Threat Reduction Agency (grant HDTRA-09-1-005)United States. Defense Threat Reduction Agency (grant HDTRA1-07-1-0004)United States. Air Force (Air Force contract # FA8721-05-C-0002

    Service level agreement framework for differentiated survivability in GMPLS-based IP-over-optical networks

    Get PDF
    In the next generation optical internet, GMPLS based IP-over-optical networks, ISPs will be required to support a wide variety of applications each having their own requirements. These requirements are contracted by means of the SLA. This paper describes a recovery framework that may be included in the SLA contract between ISP and customers in order to provide the required level of survivability. A key concern with such a recovery framework is how to present the different survivability alternatives including recovery techniques, failure scenario and layered integration into a transparent manner for customers. In this paper, two issues are investigated. First, the performance of the recovery framework when applying a proposed mapping procedure as an admission control mechanism in the edge router considering a smart-edge simple-core GMPLS-based IP/WDM network is considered. The second issue pertains to the performance of a pre-allocated restoration and its ability to provide protected connections under different failure scenarios

    Operating-system support for distributed multimedia

    Get PDF
    Multimedia applications place new demands upon processors, networks and operating systems. While some network designers, through ATM for example, have considered revolutionary approaches to supporting multimedia, the same cannot be said for operating systems designers. Most work is evolutionary in nature, attempting to identify additional features that can be added to existing systems to support multimedia. Here we describe the Pegasus project's attempt to build an integrated hardware and operating system environment from\ud the ground up specifically targeted towards multimedia

    Overlay networks for smart grids

    Get PDF

    Resilient availability and bandwidth-aware multipath provisioning for media transfer over the internet (Best Paper Award)

    Get PDF
    Traditional routing in the Internet is best-effort. Path differentiation including multipath routing is a promising technique to be used for meeting QoS requirements of media intensive applications. Since different paths have different characteristics in terms of latency, availability and bandwidth, they offer flexibility in QoS and congestion control. Additionally protection techniques can be used to enhance the reliability of the network. This paper studies the problem of how to optimally find paths ensuring maximal bandwidth and resiliency of media transfer over the network. In particular, we propose two algorithms to reserve network paths with minimal new resources while increasing the availability of the paths and enabling congestion control. The first algorithm is based on Integer Linear Programming which minimizes the cost of the paths and the used resources. The second one is a heuristic-based algorithm which solves the scalability limitations of the ILP approach. The algorithms ensure resiliency against any single link failure in the network. The experimental results indicate that using the proposed schemes the connections availability improve significantly and a more balanced load is achieved in the network compared to the shortest path-based approaches

    Ethernet - a survey on its fields of application

    Get PDF
    During the last decades, Ethernet progressively became the most widely used local area networking (LAN) technology. Apart from LAN installations, Ethernet became also attractive for many other fields of application, ranging from industry to avionics, telecommunication, and multimedia. The expanded application of this technology is mainly due to its significant assets like reduced cost, backward-compatibility, flexibility, and expandability. However, this new trend raises some problems concerning the services of the protocol and the requirements for each application. Therefore, specific adaptations prove essential to integrate this communication technology in each field of application. Our primary objective is to show how Ethernet has been enhanced to comply with the specific requirements of several application fields, particularly in transport, embedded and multimedia contexts. The paper first describes the common Ethernet LAN technology and highlights its main features. It reviews the most important specific Ethernet versions with respect to each application field’s requirements. Finally, we compare these different fields of application and we particularly focus on the fundamental concepts and the quality of service capabilities of each proposal

    Predictable migration and communication in the Quest-V multikernal

    Full text link
    Quest-V is a system we have been developing from the ground up, with objectives focusing on safety, predictability and efficiency. It is designed to work on emerging multicore processors with hardware virtualization support. Quest-V is implemented as a ``distributed system on a chip'' and comprises multiple sandbox kernels. Sandbox kernels are isolated from one another in separate regions of physical memory, having access to a subset of processing cores and I/O devices. This partitioning prevents system failures in one sandbox affecting the operation of other sandboxes. Shared memory channels managed by system monitors enable inter-sandbox communication. The distributed nature of Quest-V means each sandbox has a separate physical clock, with all event timings being managed by per-core local timers. Each sandbox is responsible for its own scheduling and I/O management, without requiring intervention of a hypervisor. In this paper, we formulate bounds on inter-sandbox communication in the absence of a global scheduler or global system clock. We also describe how address space migration between sandboxes can be guaranteed without violating service constraints. Experimental results on a working system show the conditions under which Quest-V performs real-time communication and migration.National Science Foundation (1117025
    • …
    corecore