466,957 research outputs found

    A Non-Cooperative Game Theoretical Approach For Power Control In Virtual MIMO Wireless Sensor Network

    Full text link
    Power management is one of the vital issue in wireless sensor networks, where the lifetime of the network relies on battery powered nodes. Transmitting at high power reduces the lifetime of both the nodes and the network. One efficient way of power management is to control the power at which the nodes transmit. In this paper, a virtual multiple input multiple output wireless sensor network (VMIMO-WSN)communication architecture is considered and the power control of sensor nodes based on the approach of game theory is formulated. The use of game theory has proliferated, with a broad range of applications in wireless sensor networking. Approaches from game theory can be used to optimize node level as well as network wide performance. The game here is categorized as an incomplete information game, in which the nodes do not have complete information about the strategies taken by other nodes. For virtual multiple input multiple output wireless sensor network architecture considered, the Nash equilibrium is used to decide the optimal power level at which a node needs to transmit, to maximize its utility. Outcome shows that the game theoretic approach considered for VMIMO-WSN architecture achieves the best utility, by consuming less power.Comment: 12 pages, 8 figure

    Joint Distributed Access Point Selection and Power Allocation in Cognitive Radio Networks

    Full text link
    Spectrum management has been identified as a crucial step towards enabling the technology of the cognitive radio network (CRN). Most of the current works dealing with spectrum management in the CRN focus on a single task of the problem, e.g., spectrum sensing, spectrum decision, spectrum sharing or spectrum mobility. In this work, we argue that for certain network configurations, jointly performing several tasks of the spectrum management improves the spectrum efficiency. Specifically, we study the uplink resource management problem in a CRN where there exist multiple cognitive users (CUs) and access points (APs), with each AP operates on a set of non-overlapping channels. The CUs, in order to maximize their uplink transmission rates, have to associate to a suitable AP (spectrum decision), and to share the channels belong to this AP with other CUs (spectrum sharing). These tasks are clearly interdependent, and the problem of how they should be carried out efficiently and distributedly is still open in the literature. In this work we formulate this joint spectrum decision and spectrum sharing problem into a non-cooperative game, in which the feasible strategy of a player contains a discrete variable and a continuous vector. The structure of the game is hence very different from most non-cooperative spectrum management game proposed in the literature. We provide characterization of the Nash Equilibrium (NE) of this game, and present a set of novel algorithms that allow the CUs to distributively and efficiently select the suitable AP and share the channels with other CUs. Finally, we study the properties of the proposed algorithms as well as their performance via extensive simulations.Comment: Accepted by Infocom 2011; Infocom 2011, The 30th IEEE International Conference on Computer Communication

    A Reusable Component for Communication and Data Synchronization in Mobile Distributed Interactive Applications

    Full text link
    In Distributed Interactive Applications (DIA) such as multiplayer games, where many participants are involved in a same game session and communicate through a network, they may have an inconsistent view of the virtual world because of the communication delays across the network. This issue becomes even more challenging when communicating through a cellular network while executing the DIA client on a mobile terminal. Consistency maintenance algorithms may be used to obtain a uniform view of the virtual world. These algorithms are very complex and hard to program and therefore, the implementation and the future evolution of the application logic code become difficult. To solve this problem, we propose an approach where the consistency concerns are handled separately by a distributed component called a Synchronization Medium, which is responsible for the communication management as well as the consistency maintenance. We present the detailed architecture of the Synchronization Medium and the generic interfaces it offers to DIAs. We evaluate our approach both qualitatively and quantitatively. We first demonstrate that the Synchronization Medium is a reusable component through the development of two game applications, a car racing game and a space war game. A performance evaluation then shows that the overhead introduced by the Synchronization Medium remains acceptable.Comment: In Proceedings WCSI 2010, arXiv:1010.233

    IEEE Access special section editorial: Artificial intelligence enabled networking

    Get PDF
    With today’s computer networks becoming increasingly dynamic, heterogeneous, and complex, there is great interest in deploying artificial intelligence (AI) based techniques for optimization and management of computer networks. AI techniques—that subsume multidisciplinary techniques from machine learning, optimization theory, game theory, control theory, and meta-heuristics—have long been applied to optimize computer networks in many diverse settings. Such an approach is gaining increased traction with the emergence of novel networking paradigms that promise to simplify network management (e.g., cloud computing, network functions virtualization, and software-defined networking) and provide intelligent services (e.g., future 5G mobile networks). Looking ahead, greater integration of AI into networking architectures can help develop a future vision of cognitive networks that will show network-wide intelligent behavior to solve problems of network heterogeneity, performance, and quality of service (QoS)

    An Extended Mean Field Game for Storage in Smart Grids

    Full text link
    We consider a stylized model for a power network with distributed local power generation and storage. This system is modeled as network connection a large number of nodes, where each node is characterized by a local electricity consumption, has a local electricity production (e.g. photovoltaic panels), and manages a local storage device. Depending on its instantaneous consumption and production rates as well as its storage management decision, each node may either buy or sell electricity, impacting the electricity spot price. The objective at each node is to minimize energy and storage costs by optimally controlling the storage device. In a non-cooperative game setting, we are led to the analysis of a non-zero sum stochastic game with NN players where the interaction takes place through the spot price mechanism. For an infinite number of agents, our model corresponds to an Extended Mean-Field Game (EMFG). In a linear quadratic setting, we obtain and explicit solution to the EMFG, we show that it provides an approximate Nash-equilibrium for NN-player game, and we compare this solution to the optimal strategy of a central planner.Comment: 27 pages, 5 figures. arXiv admin note: text overlap with arXiv:1607.02130 by other author

    Transforming Energy Networks via Peer to Peer Energy Trading: Potential of Game Theoretic Approaches

    Get PDF
    Peer-to-peer (P2P) energy trading has emerged as a next-generation energy management mechanism for the smart grid that enables each prosumer of the network to participate in energy trading with one another and the grid. This poses a significant challenge in terms of modeling the decision-making process of each participant with conflicting interest and motivating prosumers to participate in energy trading and to cooperate, if necessary, for achieving different energy management goals. Therefore, such decision-making process needs to be built on solid mathematical and signal processing tools that can ensure an efficient operation of the smart grid. This paper provides an overview of the use of game theoretic approaches for P2P energy trading as a feasible and effective means of energy management. As such, we discuss various games and auction theoretic approaches by following a systematic classification to provide information on the importance of game theory for smart energy research. Then, the paper focuses on the P2P energy trading describing its key features and giving an introduction to an existing P2P testbed. Further, the paper zooms into the detail of some specific game and auction theoretic models that have recently been used in P2P energy trading and discusses some important finding of these schemes.Comment: 38 pages, single column, double spac

    Multi-Layer Cyber-Physical Security and Resilience for Smart Grid

    Full text link
    The smart grid is a large-scale complex system that integrates communication technologies with the physical layer operation of the energy systems. Security and resilience mechanisms by design are important to provide guarantee operations for the system. This chapter provides a layered perspective of the smart grid security and discusses game and decision theory as a tool to model the interactions among system components and the interaction between attackers and the system. We discuss game-theoretic applications and challenges in the design of cross-layer robust and resilient controller, secure network routing protocol at the data communication and networking layers, and the challenges of the information security at the management layer of the grid. The chapter will discuss the future directions of using game-theoretic tools in addressing multi-layer security issues in the smart grid.Comment: 16 page
    • …
    corecore