3,795 research outputs found

    AI Solutions for MDS: Artificial Intelligence Techniques for Misuse Detection and Localisation in Telecommunication Environments

    Get PDF
    This report considers the application of Articial Intelligence (AI) techniques to the problem of misuse detection and misuse localisation within telecommunications environments. A broad survey of techniques is provided, that covers inter alia rule based systems, model-based systems, case based reasoning, pattern matching, clustering and feature extraction, articial neural networks, genetic algorithms, arti cial immune systems, agent based systems, data mining and a variety of hybrid approaches. The report then considers the central issue of event correlation, that is at the heart of many misuse detection and localisation systems. The notion of being able to infer misuse by the correlation of individual temporally distributed events within a multiple data stream environment is explored, and a range of techniques, covering model based approaches, `programmed' AI and machine learning paradigms. It is found that, in general, correlation is best achieved via rule based approaches, but that these suffer from a number of drawbacks, such as the difculty of developing and maintaining an appropriate knowledge base, and the lack of ability to generalise from known misuses to new unseen misuses. Two distinct approaches are evident. One attempts to encode knowledge of known misuses, typically within rules, and use this to screen events. This approach cannot generally detect misuses for which it has not been programmed, i.e. it is prone to issuing false negatives. The other attempts to `learn' the features of event patterns that constitute normal behaviour, and, by observing patterns that do not match expected behaviour, detect when a misuse has occurred. This approach is prone to issuing false positives, i.e. inferring misuse from innocent patterns of behaviour that the system was not trained to recognise. Contemporary approaches are seen to favour hybridisation, often combining detection or localisation mechanisms for both abnormal and normal behaviour, the former to capture known cases of misuse, the latter to capture unknown cases. In some systems, these mechanisms even work together to update each other to increase detection rates and lower false positive rates. It is concluded that hybridisation offers the most promising future direction, but that a rule or state based component is likely to remain, being the most natural approach to the correlation of complex events. The challenge, then, is to mitigate the weaknesses of canonical programmed systems such that learning, generalisation and adaptation are more readily facilitated

    Efficient classification using parallel and scalable compressed model and Its application on intrusion detection

    Full text link
    In order to achieve high efficiency of classification in intrusion detection, a compressed model is proposed in this paper which combines horizontal compression with vertical compression. OneR is utilized as horizontal com-pression for attribute reduction, and affinity propagation is employed as vertical compression to select small representative exemplars from large training data. As to be able to computationally compress the larger volume of training data with scalability, MapReduce based parallelization approach is then implemented and evaluated for each step of the model compression process abovementioned, on which common but efficient classification methods can be directly used. Experimental application study on two publicly available datasets of intrusion detection, KDD99 and CMDC2012, demonstrates that the classification using the compressed model proposed can effectively speed up the detection procedure at up to 184 times, most importantly at the cost of a minimal accuracy difference with less than 1% on average

    Anomaly based Intrusion Detection using Modified Fuzzy Clustering

    Get PDF
    This paper presents a network anomaly detection method based on fuzzy clustering. Computer security has become an increasingly vital field in computer science in response to the proliferation of private sensitive information. As a result, Intrusion Detection System has become an indispensable component of computer security. The proposed method consists of three steps: Pre-Processing, Feature Selection and Clustering. In pre-processing step, the duplicate samples are eliminated from the sample set. Next, principal component analysis is adopted to select the most discriminative features. In clustering step, the network samples are clustered using Robust Spatial Kernel Fuzzy C-Means (RSKFCM) algorithm. RSKFCM is a variant of traditional Fuzzy C-Means which considers the neighbourhood membership information and uses kernel distance metric. To evaluate the proposed method, we conducted experiments on standard dataset and compared the results with state-of-the-art methods. We used cluster validity indices, accuracy and false positive rate as performance metrics. Experimental results inferred that, the proposed method achieves better results compared to other methods

    Intrusion detection using clustering

    Get PDF
    In increasing trends of network environment every one gets connected to the system. So there is need of securing information, because there are lots of security threats are present in network environment. A number of techniques are available for intrusion detection. Data mining is the one of the efficient techniques available for intrusion detection. Data mining techniques may be supervised or unsuprevised.Various Author have applied various clustering algorithm for intrusion detection, but all of these are suffers form class dominance, force assignment and No Class problem. This paper proposes a hybrid model to overcome these problems. The performance of proposed model is evaluated over KDD Cup 1999 data set
    • …
    corecore