44,447 research outputs found

    Network information theory for classical-quantum channels

    Full text link
    Network information theory is the study of communication problems involving multiple senders, multiple receivers and intermediate relay stations. The purpose of this thesis is to extend the main ideas of classical network information theory to the study of classical-quantum channels. We prove coding theorems for quantum multiple access channels, quantum interference channels, quantum broadcast channels and quantum relay channels. A quantum model for a communication channel describes more accurately the channel's ability to transmit information. By using physically faithful models for the channel outputs and the detection procedure, we obtain better communication rates than would be possible using a classical strategy. In this thesis, we are interested in the transmission of classical information, so we restrict our attention to the study of classical-quantum channels. These are channels with classical inputs and quantum outputs, and so the coding theorems we present will use classical encoding and quantum decoding. We study the asymptotic regime where many copies of the channel are used in parallel, and the uses are assumed to be independent. In this context, we can exploit information-theoretic techniques to calculate the maximum rates for error-free communication for any channel, given the statistics of the noise on that channel. These theoretical bounds can be used as a benchmark to evaluate the rates achieved by practical communication protocols. Most of the results in this thesis consider classical-quantum channels with finite dimensional output systems, which are analogous to classical discrete memoryless channels. In the last chapter, we will show some applications of our results to a practical optical communication scenario, in which the information is encoded in continuous quantum degrees of freedom, which are analogous to classical channels with Gaussian noise.Comment: Ph.D. Thesis, McGill University, School of Computer Science, July 2012, 223 pages, 18 figures, 36 TikZ diagram

    Polar codes in network quantum information theory

    Get PDF
    Polar coding is a method for communication over noisy classical channels which is provably capacity-achieving and has an efficient encoding and decoding. Recently, this method has been generalized to the realm of quantum information processing, for tasks such as classical communication, private classical communication, and quantum communication. In the present work, we apply the polar coding method to network quantum information theory, by making use of recent advances for related classical tasks. In particular, we consider problems such as the compound multiple access channel and the quantum interference channel. The main result of our work is that it is possible to achieve the best known inner bounds on the achievable rate regions for these tasks, without requiring a so-called quantum simultaneous decoder. Thus, our work paves the way for developing network quantum information theory further without requiring a quantum simultaneous decoder.Comment: 18 pages, 2 figures, v2: 10 pages, double column, version accepted for publicatio

    Communication Enhancement Through Quantum Coherent Control of NN Channels in an Indefinite Causal-order Scenario

    Full text link
    In quantum Shannon theory, transmission of information is enhanced by quantum features. Up to very recently, the trajectories of transmission remained fully classical. Recently, a new paradigm was proposed by playing quantum tricks on two completely depolarizing quantum channels i.e. using coherent control in space or time of the two quantum channels. We extend here this control to the transmission of information through a network of an arbitrary number NN of channels with arbitrary individual capacity i.e. information preservation characteristics in the case of indefinite causal order. We propose a formalism to assess information transmission in the most general case of NN channels in an indefinite causal order scenario yielding the output of such transmission. Then we explicitly derive the quantum switch output and the associated Holevo limit of the information transmission for N=2N=2, N=3N=3 as a function of all involved parameters. We find in the case N=3N=3 that the transmission of information for three channels is twice of transmission of the two channel case when a full superposition of all possible causal orders is used

    Capacity Bounds for Quantum Communications through Quantum Trajectories

    Full text link
    In both classical and quantum Shannon's information theory, communication channels are generally assumed to combine through classical trajectories, so that the associated network path traversed by the information carrier is well-defined. Counter-intuitively, quantum mechanics enables a quantum information carrier to propagate through a quantum trajectory, i.e., through a path such that the causal order of the constituting communications channels becomes indefinite. Quantum trajectories exhibit astonishing features, such as providing non-null capacity even when no information can be sent through any classical trajectory. But the fundamental question of investigating the ultimate rates achievable with quantum trajectories is an open and crucial problem. To this aim, in this paper, we derive closed-form expressions for both the upper- and the lower-bound on the quantum capacity achievable via a quantum trajectory. The derived expressions depend, remarkably, on computable single-letter quantities. Our findings reveal the substantial advantage achievable with a quantum trajectory over any classical combination of the communications channels in terms of ultimate achievable communication rates. Furthermore, we identify the region where a quantum trajectory incontrovertibly outperforms the amount of transmissible information beyond the limits of conventional quantum Shannon theory, and we quantify this advantage over classical trajectories through a conservative estimate

    Entropic descriptors of quantum communications in molecules

    Get PDF
    The classical Information Theory (IT) deals with entropic descriptors of the probability distributions and probability-propagation (communication) systems, e.g., the electronic channels in molecules reflecting the information scattering via the system chemical bonds. The quantum IT additionally accounts for the non-classical (current/phase)-related contributions in the resultant information content of electronic states. The classical and non-classical terms in the quantum Shannon entropy and Fisher information are reexamined. The associated probability-propagation and current-scattering networks are introduced and their Fisher- and Shannon-type descriptors are identified. The non-additive and additive information descriptors of the probability channels in both the Atomic Orbital and local resolution levels are related to the network conditional-entropy and mutual-information, which represent the IT covalency and ionicity components in the classical communication theory of the chemical bond. A similar partition identifies the associated bond indices in the molecular current/phase channels. The resultant bond descriptors combining the classical and non-classical terms, due to the probability and current distributions, respectively, are proposed as generalized communication-noise (covalency) and information-flow (iconicity) concepts in the quantum IT

    Quantum information can be negative

    Full text link
    Given an unknown quantum state distributed over two systems, we determine how much quantum communication is needed to transfer the full state to one system. This communication measures the "partial information" one system needs conditioned on it's prior information. It turns out to be given by an extremely simple formula, the conditional entropy. In the classical case, partial information must always be positive, but we find that in the quantum world this physical quantity can be negative. If the partial information is positive, its sender needs to communicate this number of quantum bits to the receiver; if it is negative, the sender and receiver instead gain the corresponding potential for future quantum communication. We introduce a primitive "quantum state merging" which optimally transfers partial information. We show how it enables a systematic understanding of quantum network theory, and discuss several important applications including distributed compression, multiple access channels and multipartite assisted entanglement distillation (localizable entanglement). Negative channel capacities also receive a natural interpretation

    Nonclassicality detection and communication bounds in quantum networks

    Get PDF
    Quantum information investigates the possibility of enhancing our ability to process and transmit information by directly exploiting quantum mechanical laws. When searching for improvement opportunities, one typically starts by assessing the range of outcomes classically attainable, and then investigates to what extent control over the quantum features of the system could be helpful, as well as the best performance that could be achieved. In this thesis we provide examples of these aspects, in linear optics, quantum metrology, and quantum communication. We start by providing a criterion able to certify whether the outcome of a linear optical evolution cannot be explained by the classical wave-like theory of light. We do so by identifying a tight lower bound on the amount of correlations that could be detected among output intensities, when classical electrodynamics theory is used to describe the fields. Rather than simply detecting nonclassicality, we then focus on its quantification. In particular, we consider the characterisation of the amount of squeezing encoded on selected quantum probes by an unknown external device, without prior information on the direction of application. We identify the single-mode Gaussian probes leading to the largest average precision in noiseless and noisy conditions, and discuss the advantages arising from the use of correlated two-mode probes. Finally, we improve current bounds on the ultimate performance attainable in a quantum communication scenario. Specifically, we bound the number of maximally entangled qubits, or private bits, shared by two parties after a communication protocol over a quantum network, without restrictions on their classical communication. As in previous investigations, our approach is based on the evaluation of the maximum amount of entanglement that could be generated by the channels in the network, but it includes the possibility of changing entanglement measure on a channel-by-channel basis. Examples where this is advantageous are discussed.Open Acces

    A Simple and Tighter Derivation of Achievability for Classical Communication over Quantum Channels

    Full text link
    Achievability in information theory refers to demonstrating a coding strategy that accomplishes a prescribed performance benchmark for the underlying task. In quantum information theory, the crafted Hayashi-Nagaoka operator inequality is an essential technique in proving a wealth of one-shot achievability bounds since it effectively resembles a union bound in various problems. In this work, we show that the pretty-good measurement naturally plays a role as the union bound as well. A judicious application of it considerably simplifies the derivation of one-shot achievability for classical-quantum (c-q) channel coding via an elegant three-line proof. The proposed analysis enjoys the following favorable features: (i) The established one-shot bound admits a closed-form expression as in the celebrated Holevo-Helstrom Theorem. Namely, the average error probability of sending MM messages through a c-q channel is upper bounded by the error of distinguishing the joint state between channel input and output against (M1)(M-1)-many products of its marginals. (ii) Our bound directly yields asymptotic results in the large deviation, small deviation, and moderate deviation regimes in a unified manner. (iii) The coefficients incurred in applying the Hayashi-Nagaoka operator inequality are no longer needed. Hence, the derived one-shot bound sharpens existing results that rely on the Hayashi-Nagaoka operator inequality. In particular, we obtain the tightest achievable ϵ\epsilon-one-shot capacity for c-q channel heretofore, and it improves the third-order coding rate in the asymptotic scenario. (iv) Our result holds for infinite-dimensional Hilbert space. (v) The proposed method applies to deriving one-shot bounds for data compression with quantum side information, entanglement-assisted classical communication over quantum channels, and various quantum network information-processing protocols

    Secure Quantum Network Code without Classical Communication

    Full text link
    We consider the secure quantum communication over a network with the presence of a malicious adversary who can eavesdrop and contaminate the states. The network consists of noiseless quantum channels with the unit capacity and the nodes which applies noiseless quantum operations. As the main result, when the maximum number m1 of the attacked channels over the entire network uses is less than a half of the network transmission rate m0 (i.e., m1 < m0 / 2), our code implements secret and correctable quantum communication of the rate m0 - 2m1 by using the network asymptotic number of times. Our code is universal in the sense that the code is constructed without the knowledge of the specific node operations and the network topology, but instead, every node operation is constrained to the application of an invertible matrix to the basis states. Moreover, our code requires no classical communication. Our code can be thought of as a generalization of the quantum secret sharing
    corecore