43 research outputs found

    Network vector quantization

    Get PDF
    We present an algorithm for designing locally optimal vector quantizers for general networks. We discuss the algorithm's implementation and compare the performance of the resulting "network vector quantizers" to traditional vector quantizers (VQs) and to rate-distortion (R-D) bounds where available. While some special cases of network codes (e.g., multiresolution (MR) and multiple description (MD) codes) have been studied in the literature, we here present a unifying approach that both includes these existing solutions as special cases and provides solutions to previously unsolved examples

    On the rate loss and construction of source codes for broadcast channels

    Get PDF
    In this paper, we first define and bound the rate loss of source codes for broadcast channels. Our broadcast channel model comprises one transmitter and two receivers; the transmitter is connected to each receiver by a private channel and to both receivers by a common channel. The transmitter sends a description of source (X, Y) through these channels, receiver 1 reconstructs X with distortion D1, and receiver 2 reconstructs Y with distortion D2. Suppose the rates of the common channel and private channels 1 and 2 are R0, R1, and R2, respectively. The work of Gray and Wyner gives a complete characterization of all achievable rate triples (R0,R1,R2) given any distortion pair (D1,D2). In this paper, we define the rate loss as the gap between the achievable region and the outer bound composed by the rate-distortion functions, i.e., R0+R1+R2 ≥ RX,Y (D1,D2), R0 + R1 ≥ RX(D1), and R0 + R2 ≥ RY (D2). We upper bound the rate loss for general sources by functions of distortions and upper bound the rate loss for Gaussian sources by constants, which implies that though the outer bound is generally not achievable, it may be quite close to the achievable region. This also bounds the gap between the achievable region and the inner bound proposed by Gray and Wyner and bounds the performance penalty associated with using separate decoders rather than joint decoders. We then construct such source codes using entropy-constrained dithered quantizers. The resulting implementation has low complexity and performance close to the theoretical optimum. In particular, the gap between its performance and the theoretical optimum can be bounded from above by constants for Gaussian sources

    n-Channel Asymmetric Multiple-Description Lattice Vector Quantization

    Full text link
    We present analytical expressions for optimal entropy-constrained multiple-description lattice vector quantizers which, under high-resolutions assumptions, minimize the expected distortion for given packet-loss probabilities. We consider the asymmetric case where packet-loss probabilities and side entropies are allowed to be unequal and find optimal quantizers for any number of descriptions in any dimension. We show that the normalized second moments of the side-quantizers are given by that of an LL-dimensional sphere independent of the choice of lattices. Furthermore, we show that the optimal bit-distribution among the descriptions is not unique. In fact, within certain limits, bits can be arbitrarily distributed.Comment: To appear in the proceedings of the 2005 IEEE International Symposium on Information Theory, Adelaide, Australia, September 4-9, 200

    Optimal multiple description and multiresolution scalar quantizer design

    Get PDF
    The author presents new algorithms for fixed-rate multiple description and multiresolution scalar quantizer design. The algorithms both run in time polynomial in the size of the source alphabet and guarantee globally optimal solutions. To the author's knowledge, these are the first globally optimal design algorithms for multiple description and multiresolution quantizers

    Lossless and near-lossless source coding for multiple access networks

    Get PDF
    A multiple access source code (MASC) is a source code designed for the following network configuration: a pair of correlated information sequences {X-i}(i=1)(infinity), and {Y-i}(i=1)(infinity) is drawn independent and identically distributed (i.i.d.) according to joint probability mass function (p.m.f.) p(x, y); the encoder for each source operates without knowledge of the other source; the decoder jointly decodes the encoded bit streams from both sources. The work of Slepian and Wolf describes all rates achievable by MASCs of infinite coding dimension (n --> infinity) and asymptotically negligible error probabilities (P-e((n)) --> 0). In this paper, we consider the properties of optimal instantaneous MASCs with finite coding dimension (n 0) performance. The interest in near-lossless codes is inspired by the discontinuity in the limiting rate region at P-e((n)) = 0 and the resulting performance benefits achievable by using near-lossless MASCs as entropy codes within lossy MASCs. Our central results include generalizations of Huffman and arithmetic codes to the MASC framework for arbitrary p(x, y), n, and P-e((n)) and polynomial-time design algorithms that approximate these optimal solutions

    Texture analysis via unsupervised and supervised learning

    Get PDF
    A framework for texture analysis based on combined unsupervised and supervised learning is proposed. The textured input is represented in the frequency-orientation space via a Gabor-wavelet pyramidal decomposition. In the unsupervised learning phase a neural network vector quantization scheme is used for the quantization of the feature-vector attributes and a projection onto a reduced dimension clustered map for initial segmentation. A supervised stage follows, in which labeling of the textured map is achieved using a rule-based system. A set of informative features are extracted in the supervised stage as congruency rules between attributes using an information-theoretic measure. This learned set can now act as a classification set for test images. This approach is suggested as a general framework for pattern classification. Simulation results for the texture classification are given

    Face Recognition Methods Based on Feedforward Neural Networks, Principal Component Analysis and Self-Organizing Map

    Get PDF
    In this contribution, human face as biometric is considered. Original method of feature extraction from image data is introduced using MLP (multilayer perceptron) and PCA (principal component analysis). This method is used in human face recognition system and results are compared to face recognition system using PCA directly, to a system with direct classification of input images by MLP and RBF (radial basis function) networks, and to a system using MLP as a feature extractor and MLP and RBF networks in the role of classifier. Also a two-stage method for face recognition is presented, in which Kohonen self-organizing map is used as a feature extractor. MLP and RBF network are used as classifiers. In order to obtain deeper insight into presented methods, also visualizations of internal representation of input data obtained by neural networks are presented

    Phoneme Based Speaker Verification System Based on Two Stage Self-Organizing Map Design

    Get PDF
    Speaker verification is one of the pattern recognition task that authenticate a person by his or her voice. This thesis deals with a relatively new technique of classification that is the self-organizing map (SOM). Self-organizing map, as an unsupervised learning artificial neural network, rarely used as final classification step in pattern recognition task due to its relatively low accuracy. A two-stage self-organizing map design has been implemented in this thesis and showed improved results over conventional single stage design. For speech features extraction, this thesis does not introduce any new technique. A well study method that is the linear prediction analysis (LP A) has been used. Linear predictive analysis derived coefficients are extracted from segmented raw speech signal to train and test the front stage self-organizing map. Unlike other multistage or hierarchical self-organizing map designs, this thesis utilized residual vectors generated from front stage self-organizing map to train and test the second stage selforganizing map. The results showed that by breaking the classification tasks into two level or more detail resolution, an improvement of more than 5% can be obtained. Moreover, the computation time is also reduced greatly
    corecore