266,461 research outputs found
Contamination source inference in water distribution networks
We study the inference of the origin and the pattern of contamination in
water distribution networks. We assume a simplified model for the dyanmics of
the contamination spread inside a water distribution network, and assume that
at some random location a sensor detects the presence of contaminants. We
transform the source location problem into an optimization problem by
considering discrete times and a binary contaminated/not contaminated state for
the nodes of the network. The resulting problem is solved by Mixed Integer
Linear Programming. We test our results on random networks as well as in the
Modena city network
Effects of Spatial Randomness on Locating a Point Source with Distributed Sensors
Most studies that consider the problem of estimating the location of a point
source in wireless sensor networks assume that the source location is estimated
by a set of spatially distributed sensors, whose locations are fixed. Motivated
by the fact that the observation quality and performance of the localization
algorithm depend on the location of the sensors, which could be randomly
distributed, this paper investigates the performance of a recently proposed
energy-based source-localization algorithm under the assumption that the
sensors are positioned according to a uniform clustering process. Practical
considerations such as the existence and size of the exclusion zones around
each sensor and the source will be studied. By introducing a novel performance
measure called the estimation outage, it will be shown how parameters related
to the network geometry such as the distance between the source and the closest
sensor to it as well as the number of sensors within a region surrounding the
source affect the localization performance.Comment: 7 Pages, 5 Figures, To appear at the 2014 IEEE International
Conference on Communications (ICC'14) Workshop on Advances in Network
Localization and Navigation (ANLN), Invited Pape
Estimation over Communication Networks: Performance Bounds and Achievability Results
This paper considers the problem of estimation over communication networks. Suppose a sensor is taking measurements of a dynamic process. However the process needs to be estimated at a remote location connected to the sensor through a network of communication links that drop packets stochastically. We provide a framework for computing the optimal performance in the sense of expected error covariance. Using this framework we characterize the dependency of the performance on the topology of the network and the packet dropping process. For independent and memoryless packet dropping processes we find the steady-state error for some classes of networks and obtain lower and upper bounds for the performance of a general network. Finally we find a necessary and sufficient condition for the stability of the estimate error covariance for general networks with spatially correlated and Markov type dropping process. This interesting condition has a max-cut interpretation
Optimal Fair Scheduling in S-TDMA Sensor Networks for Monitoring River Plumes
Underwater wireless sensor networks (UWSNs) are a promising technology to provide oceanographers with environmental data
in real time. Suitable network topologies to monitor estuaries are formed by strings coming together to a sink node.This network
may be understood as an oriented graph. A number of MAC techniques can be used in UWSNs, but Spatial-TDMA is preferred
for fixed networks. In this paper, a scheduling procedure to obtain the optimal fair frame is presented, under ideal conditions
of synchronization and transmission errors. The main objective is to find the theoretical maximum throughput by overlapping
the transmissions of the nodes while keeping a balanced received data rate from each sensor, regardless of its location in the
network. The procedure searches for all cliques of the compatibility matrix of the network graph and solves a Multiple-Vector
Bin Packing (MVBP) problem. This work addresses the optimization problem and provides analytical and numerical results for
both the minimum frame length and the maximum achievable throughput
- …
