51 research outputs found

    Unsupervised Intrusion Detection with Cross-Domain Artificial Intelligence Methods

    Get PDF
    Cybercrime is a major concern for corporations, business owners, governments and citizens, and it continues to grow in spite of increasing investments in security and fraud prevention. The main challenges in this research field are: being able to detect unknown attacks, and reducing the false positive ratio. The aim of this research work was to target both problems by leveraging four artificial intelligence techniques. The first technique is a novel unsupervised learning method based on skip-gram modeling. It was designed, developed and tested against a public dataset with popular intrusion patterns. A high accuracy and a low false positive rate were achieved without prior knowledge of attack patterns. The second technique is a novel unsupervised learning method based on topic modeling. It was applied to three related domains (network attacks, payments fraud, IoT malware traffic). A high accuracy was achieved in the three scenarios, even though the malicious activity significantly differs from one domain to the other. The third technique is a novel unsupervised learning method based on deep autoencoders, with feature selection performed by a supervised method, random forest. Obtained results showed that this technique can outperform other similar techniques. The fourth technique is based on an MLP neural network, and is applied to alert reduction in fraud prevention. This method automates manual reviews previously done by human experts, without significantly impacting accuracy

    HF-SCA: Hands-Free Strong Customer Authentication Based on a Memory-Guided Attention Mechanisms

    Get PDF
    Strong customer authentication (SCA) is a requirement of the European Union Revised Directive on Payment Services (PSD2) which ensures that electronic payments are performed with multifactor authentication. While increasing the security of electronic payments, the SCA impacted seriously on the shopping carts abandonment: an Italian bank computed that 22% of online purchases in the first semester of 2021 did not complete because of problems with the SCA. Luckily, the PSD2 allows the use of transaction risk analysis tool to exempt the SCA process. In this paper, we propose an unsupervised novel combination of existing machine learning techniques able to determine if a purchase is typical or not for a specific customer, so that in the case of a typical purchase the SCA could be exempted. We modified a well-known architecture (U-net) by replacing convolutional blocks with squeeze-and-excitation blocks. After that, a memory network was added in a latent space and an attention mechanism was introduced in the decoding side of the network. The proposed solution was able to detect nontypical purchases by creating temporal correlations between transactions. The network achieved 97.7% of AUC score over a well-known dataset retrieved online. By using this approach, we found that 98% of purchases could be executed by securely exempting the SCA, while shortening the customer’s journey and providing an elevated user experience. As an additional validation, we developed an Alexa skill for Amazon smart glasses which allows a user to shop and pay online by merely using vocal interaction, leaving the hands free to perform other activities, for example driving a car

    End-to-end anomaly detection in stream data

    Get PDF
    Nowadays, huge volumes of data are generated with increasing velocity through various systems, applications, and activities. This increases the demand for stream and time series analysis to react to changing conditions in real-time for enhanced efficiency and quality of service delivery as well as upgraded safety and security in private and public sectors. Despite its very rich history, time series anomaly detection is still one of the vital topics in machine learning research and is receiving increasing attention. Identifying hidden patterns and selecting an appropriate model that fits the observed data well and also carries over to unobserved data is not a trivial task. Due to the increasing diversity of data sources and associated stochastic processes, this pivotal data analysis topic is loaded with various challenges like complex latent patterns, concept drift, and overfitting that may mislead the model and cause a high false alarm rate. Handling these challenges leads the advanced anomaly detection methods to develop sophisticated decision logic, which turns them into mysterious and inexplicable black-boxes. Contrary to this trend, end-users expect transparency and verifiability to trust a model and the outcomes it produces. Also, pointing the users to the most anomalous/malicious areas of time series and causal features could save them time, energy, and money. For the mentioned reasons, this thesis is addressing the crucial challenges in an end-to-end pipeline of stream-based anomaly detection through the three essential phases of behavior prediction, inference, and interpretation. The first step is focused on devising a time series model that leads to high average accuracy as well as small error deviation. On this basis, we propose higher-quality anomaly detection and scoring techniques that utilize the related contexts to reclassify the observations and post-pruning the unjustified events. Last but not least, we make the predictive process transparent and verifiable by providing meaningful reasoning behind its generated results based on the understandable concepts by a human. The provided insight can pinpoint the anomalous regions of time series and explain why the current status of a system has been flagged as anomalous. Stream-based anomaly detection research is a principal area of innovation to support our economy, security, and even the safety and health of societies worldwide. We believe our proposed analysis techniques can contribute to building a situational awareness platform and open new perspectives in a variety of domains like cybersecurity, and health
    corecore