8,718 research outputs found

    Network Inference with Hidden Units

    Full text link
    We derive learning rules for finding the connections between units in stochastic dynamical networks from the recorded history of a ``visible'' subset of the units. We consider two models. In both of them, the visible units are binary and stochastic. In one model the ``hidden'' units are continuous-valued, with sigmoidal activation functions, and in the other they are binary and stochastic like the visible ones. We derive exact learning rules for both cases. For the stochastic case, performing the exact calculation requires, in general, repeated summations over an number of configurations that grows exponentially with the size of the system and the data length, which is not feasible for large systems. We derive a mean field theory, based on a factorized ansatz for the distribution of hidden-unit states, which offers an attractive alternative for large systems. We present the results of some numerical calculations that illustrate key features of the two models and, for the stochastic case, the exact and approximate calculations

    Network Inference from Consensus Dynamics

    Full text link
    We consider the problem of identifying the topology of a weighted, undirected network G\mathcal G from observing snapshots of multiple independent consensus dynamics. Specifically, we observe the opinion profiles of a group of agents for a set of MM independent topics and our goal is to recover the precise relationships between the agents, as specified by the unknown network G\mathcal G. In order to overcome the under-determinacy of the problem at hand, we leverage concepts from spectral graph theory and convex optimization to unveil the underlying network structure. More precisely, we formulate the network inference problem as a convex optimization that seeks to endow the network with certain desired properties -- such as sparsity -- while being consistent with the spectral information extracted from the observed opinions. This is complemented with theoretical results proving consistency as the number MM of topics grows large. We further illustrate our method by numerical experiments, which showcase the effectiveness of the technique in recovering synthetic and real-world networks.Comment: Will be presented at the 2017 IEEE Conference on Decision and Control (CDC

    Network Inference from Co-Occurrences

    Full text link
    The recovery of network structure from experimental data is a basic and fundamental problem. Unfortunately, experimental data often do not directly reveal structure due to inherent limitations such as imprecision in timing or other observation mechanisms. We consider the problem of inferring network structure in the form of a directed graph from co-occurrence observations. Each observation arises from a transmission made over the network and indicates which vertices carry the transmission without explicitly conveying their order in the path. Without order information, there are an exponential number of feasible graphs which agree with the observed data equally well. Yet, the basic physical principles underlying most networks strongly suggest that all feasible graphs are not equally likely. In particular, vertices that co-occur in many observations are probably closely connected. Previous approaches to this problem are based on ad hoc heuristics. We model the experimental observations as independent realizations of a random walk on the underlying graph, subjected to a random permutation which accounts for the lack of order information. Treating the permutations as missing data, we derive an exact expectation-maximization (EM) algorithm for estimating the random walk parameters. For long transmission paths the exact E-step may be computationally intractable, so we also describe an efficient Monte Carlo EM (MCEM) algorithm and derive conditions which ensure convergence of the MCEM algorithm with high probability. Simulations and experiments with Internet measurements demonstrate the promise of this approach.Comment: Submitted to IEEE Transactions on Information Theory. An extended version is available as University of Wisconsin Technical Report ECE-06-

    Gene-network inference by message passing

    Full text link
    The inference of gene-regulatory processes from gene-expression data belongs to the major challenges of computational systems biology. Here we address the problem from a statistical-physics perspective and develop a message-passing algorithm which is able to infer sparse, directed and combinatorial regulatory mechanisms. Using the replica technique, the algorithmic performance can be characterized analytically for artificially generated data. The algorithm is applied to genome-wide expression data of baker's yeast under various environmental conditions. We find clear cases of combinatorial control, and enrichment in common functional annotations of regulated genes and their regulators.Comment: Proc. of International Workshop on Statistical-Mechanical Informatics 2007, Kyot

    Gene-network inference by message passing

    Full text link
    The inference of gene-regulatory processes from gene-expression data belongs to the major challenges of computational systems biology. Here we address the problem from a statistical-physics perspective and develop a message-passing algorithm which is able to infer sparse, directed and combinatorial regulatory mechanisms. Using the replica technique, the algorithmic performance can be characterized analytically for artificially generated data. The algorithm is applied to genome-wide expression data of baker's yeast under various environmental conditions. We find clear cases of combinatorial control, and enrichment in common functional annotations of regulated genes and their regulators.Comment: Proc. of International Workshop on Statistical-Mechanical Informatics 2007, Kyot

    Gene-network inference by message passing

    Full text link
    The inference of gene-regulatory processes from gene-expression data belongs to the major challenges of computational systems biology. Here we address the problem from a statistical-physics perspective and develop a message-passing algorithm which is able to infer sparse, directed and combinatorial regulatory mechanisms. Using the replica technique, the algorithmic performance can be characterized analytically for artificially generated data. The algorithm is applied to genome-wide expression data of baker's yeast under various environmental conditions. We find clear cases of combinatorial control, and enrichment in common functional annotations of regulated genes and their regulators.Comment: Proc. of International Workshop on Statistical-Mechanical Informatics 2007, Kyot

    Modeling Information Propagation with Survival Theory

    Full text link
    Networks provide a skeleton for the spread of contagions, like, information, ideas, behaviors and diseases. Many times networks over which contagions diffuse are unobserved and need to be inferred. Here we apply survival theory to develop general additive and multiplicative risk models under which the network inference problems can be solved efficiently by exploiting their convexity. Our additive risk model generalizes several existing network inference models. We show all these models are particular cases of our more general model. Our multiplicative model allows for modeling scenarios in which a node can either increase or decrease the risk of activation of another node, in contrast with previous approaches, which consider only positive risk increments. We evaluate the performance of our network inference algorithms on large synthetic and real cascade datasets, and show that our models are able to predict the length and duration of cascades in real data.Comment: To appear at ICML '1

    Impact of lag information on network inference

    Get PDF
    Extracting useful information from data is a fundamental challenge across disciplines as diverse as climate, neuroscience, genetics, and ecology. In the era of ``big data'', data is ubiquitous, but appropriated methods are needed for gaining reliable information from the data. In this work we consider a complex system, composed by interacting units, and aim at inferring which elements influence each other, directly from the observed data. The only assumption about the structure of the system is that it can be modeled by a network composed by a set of NN units connected with LL un-weighted and un-directed links, however, the structure of the connections is not known. In this situation the inference of the underlying network is usually done by using interdependency measures, computed from the output signals of the units. We show, using experimental data recorded from randomly coupled electronic R{\"o}ssler chaotic oscillators, that the information of the lag times obtained from bivariate cross-correlation analysis can be useful to gain information about the real connectivity of the system
    • …
    corecore