449 research outputs found

    Skew detection and compensation for Internet audio applications

    Get PDF
    Long lived audio streams, such as music broadcasts, and small differences in clock rates lead to buffer underflow or overflow events in receiving applications that manifest themselves as audible interruptions. We present a low complexity algorithm for detecting clock skew in network audio applications that function with local clocks and in the absence of a synchronization mechanism. A companion algorithm to perform skew compensation is also presented. The compensation algorithm utilises the temporal redundancy inherent in audio streams to make inaudible playout adjustments. Both algorithms have been implemented in a simulator and in a network audio application. They perform effectively over the range of observed clock rate differences and beyond

    Space Shuttle/TDRSS communication and tracking systems analysis

    Get PDF
    In order to evaluate the technical and operational problem areas and provide a recommendation, the enhancements to the Tracking and Data Delay Satellite System (TDRSS) and Shuttle must be evaluated through simulation and analysis. These enhancement techniques must first be characterized, then modeled mathematically, and finally updated into LinCsim (analytical simulation package). The LinCsim package can then be used as an evaluation tool. Three areas of potential enhancements were identified: shuttle payload accommodations, TDRSS SSA and KSA services, and shuttle tracking system and navigation sensors. Recommendations for each area were discussed

    Packet-switched voice and its application to integrated voice / data networks

    Get PDF
    Imperial Users onl

    Business Case and Technology Analysis for 5G Low Latency Applications

    Get PDF
    A large number of new consumer and industrial applications are likely to change the classic operator's business models and provide a wide range of new markets to enter. This article analyses the most relevant 5G use cases that require ultra-low latency, from both technical and business perspectives. Low latency services pose challenging requirements to the network, and to fulfill them operators need to invest in costly changes in their network. In this sense, it is not clear whether such investments are going to be amortized with these new business models. In light of this, specific applications and requirements are described and the potential market benefits for operators are analysed. Conclusions show that operators have clear opportunities to add value and position themselves strongly with the increasing number of services to be provided by 5G.Comment: 18 pages, 5 figure

    Supporting Real-Time Applications in an Integrated Services Packet Network: Architecture and Mechanism

    Get PDF
    This paper considers the support of real-time applications in an Integrated Services Packet Network (ISPN). We first review the characteristics of real-time applications. We observe that, contrary to the popular view that real-time applications necessarily require a fixed delay bound, some real-time applications are more flexible and can adapt to current network conditions. We then propose an ISPN architecture that supports two distinct kinds of real-time service: guaranteed service, which is the traditional form of real-time service discussed in most of the literature and involves pre-computed worst-case delay bounds, and predicted service, which uses the measured performance of the network in computing delay bounds. We then propose a packet scheduling mechanism that can support both of these real-time services as well as accommodate datagram traffic. We also discuss two other aspects of an overall ISPN architecture: the service interface and the admission control criteria.Research at MIT was supported by DARPA through NASA Grant NAG 2-582, by NSF grant NCR-8814187, and by DARPA and NSF through Cooperative Agreement NCR-8919038 with the Corporation for National Research Initiatives
    corecore