
Supporting Real-Time Applications in an Integrated Services Packet Network:

Architecture and Mechanism

David D. Clark1

Laboratory for Computer Science

Massachusetts Institute of Technology

ddc@lcs.mit.edu

Scott Shenker Lixia Zhang

Palo Alto Research Center

Xerox Corporation

shenker, lixia@parc.xerox.com

Abstract

This paper considers the support of real-time applications
in an Integrated Services Packet Network (ISPN). We �rst
review the characteristics of real-time applications. We ob-
serve that, contrary to the popular view that real-time ap-
plications necessarily require a �xed delay bound, some real-
time applications are more exible and can adapt to current
network conditions. We then propose an ISPN architec-
ture that supports two distinct kinds of real-time service:
guaranteed service, which is the traditional form of real-
time service discussed in most of the literature and involves
pre-computed worst-case delay bounds, and predicted service
which uses the measured performance of the network in com-
puting delay bounds. We then propose a packet scheduling
mechanism that can support both of these real-time services
as well as accommodate datagram tra�c. We also discuss
two other aspects of an overall ISPN architecture: the ser-
vice interface and the admission control criteria.

1 Introduction

The current generation of telephone networks and the cur-
rent generation of computer networks were each designed to
carry speci�c and very di�erent kinds of tra�c: analog voice
and digital data. However, with the digitizing of telephony
in ISDN and the increasing use of multi-media in computer
applications, this distinction is rapidly disappearing. Merg-
ing these sorts of services into a single network, which we re-
fer to here as an Integrated Services Packet Network (ISPN),
would yield a single telecommunications infrastructure o�er-
ing a multitude of advantages, including vast economies of
scale, ubiquity of access, and improved statistical multiplex-
ing. There is a broad consensus, at least in the computer
networking community, that an ISPN is both a worthy and
an achievable goal. However, there are many political, ad-
ministrative, and technical hurdles to overcome before this
vision can become a reality.

1Research at MIT was supported by DARPA through NASAGrant
NAG 2-582, by NSF grant NCR-8814187, and by DARPA and NSF
through Cooperative Agreement NCR-8919038 with the Corporation
for National Research Initiatives.

One of the most vexing technical problems that blocks
the path towards an ISPN is that of supporting real-time
applications in a packet network. Real-time applications
are quite di�erent from standard data applications, and re-
quire service that cannot be delivered within the typical data
service architecture. In Section 2 we discuss the nature of
real-time applications at length; here, however, it su�ces
to observe that one salient characteristic of the real-time
applications we consider is that they require a bound on
the delivery delay of each packet2. While this bound may
be statistical, in the sense that some small fraction of the
packets may fail to arrive by this bound, the bound itself
must be known a priori. The traditional data service archi-
tecture underlying computer networks has no facilities for
prescheduling resources or denying service upon overload,
and thus is unable to meet this real-time requirement.

Therefore, in order to handle real-time tra�c, an en-
hanced architecture is needed for an ISPN. We identify four
key components to this architecture. The �rst piece of the
architecture is the nature of the commitments made by the
network when it promises to deliver a certain quality of ser-
vice. We identify two sorts of commitments, guaranteed and
predicted. Predicted service is a major aspect of our paper.
While the idea of predicted service has been considered be-
fore, the issues that surround it have not, to our knowledge,
been carefully explored.

The second piece of the architecture is the service inter-
face, i.e., the set of parameters passed between the source
and the network. The service interface must include both
the characterization of the quality of service the network will
deliver, ful�lling the need of applications to know when their
packets will arrive, and the characterization of the source's
tra�c, thereby allowing the network to knowledgeably al-
locate resources. In this paper we attempt to identify the
critical aspects of the service interface, and o�er a particular
interface as an example. We address in passing the need for
enforcement of these characterizations.

The third piece of the architecture is the packet schedul-
ing behavior of network switches needed to meet these ser-
vice commitments. We discuss both the actual scheduling
algorithms to be used in the switches, as well as the schedul-
ing information that must be carried in packet headers. This

2Since the term bound is tossed around with great abandon in the
rest of the paper, we need to identify several di�erent meanings to
the term. An a priori bound on delay is a statement that none of
the future delays will exceed that amount. A post facto bound is the
maximal value of a set of observed delays. Statistical bounds allow
for a certain percentage of violations of the bound; absolute bounds
allow none.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/4379231?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


part of the architecture must be carefully considered; since it
must be executed for every packet it must not be so complex
as to e�ect overall network performance.

The �nal part of the architecture is the means by which
the tra�c and service commitments get established. Clearly,
the ability of the network to meet its service commitments is
related to the criteria the network uses to decide whether to
accept another request for service. While we do not present
a speci�c algorithm to regulate the admission of new sources,
we show the relation between the other parts of our proposal
and a general approach to the admission control problem.

There are also many architectural issues not directly re-
lated to the nature of real-time tra�c; for instance, the is-
sues of routing and interaction of administrative domains
all pose interesting challenges. We do not address these is-
sues in this paper, and any �nal architectural proposal for
an ISPN must solve these longstanding problems. It is im-
portant to note, however, that we do not believe that the
architectural choices we advocate here for real-time tra�c
unnecessarily restrict the scope of solutions to these other
problems.

This paper has 12 Sections and an Appendix. In Section
2 we begin with a discussion of the nature of real-time traf-
�c. In particular, we note that some real-time applications
can adapt to current network conditions. This leads us to
propose, in Section 3, that the ISPN support two kinds of
real-time service commitments: guaranteed service and pre-
dicted service. In Section 4 we present a time-stamp based
scheduling algorithm which is a nonuniformly weighted ver-
sion of the Fair Queueing algorithm discussed in Reference
[4], and then refer to a recent result due to Parekh and Gal-
lager (see References [19, 20]) which states that, under cer-
tain conditions, this algorithm delivers guaranteed service in
a network of arbitrary topology. We then turn, in Sections
5 and 6, to the scheduling algorithms best suited for pro-
viding predicted service. We combine these two scheduling
algorithms in Section 7, presenting a uni�ed scheduling algo-
rithm which provides both guaranteed and predicted service.
The scheduling algorithm incorporates two novel ideas; that
of using FIFO service in a real-time context, and that of cor-
relating the queueing delay of a packet at successive nodes
in its path to reduce delay jitter. Given the current frenzy
of activity in the design of real-time scheduling algorithms,
we do not expect that the algorithm presented here will be
the �nal word on the matter; however, we do hope that the
insight embodied therein will be of lasting value. In partic-
ular, we think that the insight underlying our design, that it
is necessary to distinguish between the two basic principles
of isolation and sharing, is both fundamental and novel.

In Section 8 we return to the issue of the service interface.
Since the service interface will be invoked by applications,
we expect that a real-time service interface will outlive any
particular underlying network mechanism. Thus, we have
attempted in our proposal to produce an interface which is
exible enough to accommodate a wide variety of supporting
mechanisms. Admission control policies are discussed briey
in Section 9, and the support of other service qualities is
covered in Section 10.

In order to build up su�cient context to meaningfully
compare our work to previously published work, we de-
lay the detailed discussion of related work until Section 11.
However, we wish to note here that our work borrows heav-
ily from the rapidly growing literature on providing real-
time service in packet networks. In particular, the works of
Parekh and Gallager ([20, 19]), Jacobson and Floyd ([14]),

and Lazar, Hyman, and Paci�ci ([12, 13]) have all con-
tributed to our design.

Finally, in Section 12, we conclude our paper with a re-
view of our results and a brief discussion of related economic
issues. The Appendix contains details relating to the simu-
lation results that are presented in Sections 5-7.

2 Properties of Real-Time Tra�c

2.1 A Class of Real-Time Applications

In the discussion that follows, we focus on a particular class
of real-time application which we dub play-back applications.
In a play-back application, the source takes some signal,
packetizes it, and then transmits it over the network. The
network inevitably introduces some variation in the delay of
each delivered packet. This variation has traditionally been
called jitter. The receiver depacketizes the data and then
attempts to faithfully play back the signal. This is done
by bu�ering the incoming data to remove the network in-
duced jitter and then replaying the signal at some designated
play-back point. Any data that arrives before its associated
play-back point can be used to reconstruct the signal; data
arriving after the play-back point is useless in reconstructing
the real-time signal. For the purposes of this paper, we as-
sume that all such applications have su�cient bu�ering to
store all packets which arrive before the play-back point; we
return to this point in Section 10.

Not all real-time applications are play-back applications
(for example, one might imagine a visualization application
which merely displayed the image encoded in each packet
whenever it arrived). However, we believe the vast majority
of future real-time applications, including most video and
audio applications, will �t this paradigm. Furthermore, non-
play-back applications can still use the real-time network
service provided by our architecture, although this service
is not speci�cally tailored to their needs.

Play-back real-time applications have several service re-
quirements that inform our design proposal. First, since
there is often real-time interaction between the two ends
of an application, as in a voice conversation, the application
performance is sensitive to the data delivery delay; in general
lower delay is much preferable. Second, in order to set the
play-back point, the application needs to have some infor-
mation (preferably an absolute or statistical bound) about
the delays that each packet will experience. Third, since all
data is bu�ered until the play-back point, the application is
indi�erent as to when data is delivered as long as it arrives
before the play-back point3 . This turns out to be a crucial
point, as it allows us to delay certain packets which are in no
danger of missing their play-back point in favor of packets
which are. Fourth, these play-back applications can often
tolerate the loss of a certain fraction of packets with only a
minimal distortion in the signal. Therefore, the play-back
point need not be so delayed that absolutely every packet
arrives beforehand.

2.2 The Nature of Delay

The delay in the network derives from several causes. There
is in practice a large �xed component to the delay, caused
by the propagation of the packet at the speed of light, and

3This is where we invoke the assumption, mentioned previously,
that the receiver has su�cient bu�ers.



the delay in transmission at each switch point waiting for
the entire packet to arrive before commencing the next stage
of transmission. (Cut-through networks avoid this delay by
starting transmission before receipt is complete; most packet
networks are not cut-through.) Added to this �xed delay is a
variable amount of delay related to the time that each packet
spends in service queues in the switches. This variation, or
jitter, is what must be bounded and minimized if adequate
real-time service is to be achieved.

Queueing is a fundamental consequence of the statistical
sharing that occurs in packet networks. One way to reduce
jitter might be to eliminate the statistical behavior of the
sources. Indeed, one misconception is that real-time sources
cannot be bursty (variable in their transmission rate), but
must transmit at a �xed invariant rate to achieve a real-time
service. We reject this idea; allowing sources to have bursty
transmission rates and to take advantage of statistical shar-
ing is a major advantage of packet networks. Our approach
is thus to bound and characterize the burstiness, rather than
eliminate it.

The idea of statistical sharing implies that there are in-
deed several sources using the bandwidth; one cannot share
alone. Our approach to real-time tra�c thus looks at the
aggregation of tra�c as fundamental; the network must be
shared in such a way that clients (1) get better service than
if there were no sharing (as in a circuit switched or TDM
network) and (2) are protected from the potentially negative
e�ects of sharing (most obviously the disruption of service
caused by sharing with a mis-behaving source that overloads
the resource).

2.3 Dealing with Delay

In order for an application to predict its level of performance
with a given quality of network service, it needs to deter-
mine, to achieve satisfactory performance, what fraction of
its packets must arrive before the play-back point, and it
needs to know where to set its playback point. Thus, some
bound on the delay, plus an estimate of the fraction of pack-
ets missing that bound, forms the nucleus of the network's
service speci�cation in the service interface (to be discussed
more fully in Section 8).

Some real-time applications will use an a priori delay
bound advertised by the network to set the play-back point
and will keep the play-back point �xed regardless of the
actual delays experienced. These we dub rigid applications.
For other applications, the receiver will measure the network
delay experienced by arriving packets and then adaptively
move the playback point to the minimal delay that still pro-
duces a su�ciently low loss rate. We call such applications
adaptive. Notice that adaptive applications will typically
have an earlier play-back point than rigid applications, and
thus will su�er less performance degradation due to delay.
This is because the client's estimate of the de facto bound
on actual delay will likely be less than the a priori bound
pre-computed by the network. On the other hand, since
the adaptation process is not perfect and may occasionally
set the play-back point too early, adaptive applications will
likely experience some amount of losses.

The idea of adaptive applications is not relevant to cir-
cuit switched networks, which do not have jitter due to
queueing. Thus most real-time devices today, like voice
and video codecs, are not adaptive. Lack of widespread
experience may raise the concern that adaptive applications
will be di�cult to build. However, early experiments sug-

gest that it is actually rather easy. Video can be made
to adapt by dropping or replaying a frame as necessary,
and voice can adapt imperceptibly by adjusting silent peri-
ods. In fact, such adaptative approaches have been applied
to implement packetized voice applications since early 70's
(citeWeinstein); the VT ([2]) and VAT ([15]) packet voice
protocols, which are currently used to transmit voice on the
Internet, are living examples of such adaptive applications4 .
It is important to note that while adaptive applications can
adjust to the delivered delays over some range, there are
typically limits to this adaptability; for instance, once the
delay reaches a certain level, it would become di�cult to
carry out interactive conversations.

Another useful distinction between network clients is how
tolerant they are to brief interruptions in service. This level
of tolerance is not just a function of the application, but
also of the end users involved. For instance, a video confer-
ence allowing one surgeon to remotely assist another during
an operation will not be tolerant of any interruption of ser-
vice, whereas a video conference-based family reunion might
happily tolerate interruptions in service (as long as it was
reected in a cheaper service rate).

We can thus characterize network clients along two axes:
adaptive or rigid, and tolerant or intolerant. It is unlikely
that an intolerant network client is adaptive, since the adap-
tive process will likely lead, in the event of rapidly changing
network conditions, to a brief interruption in service while
the play-back point is re-adjusting. Furthermore, a tolerant
client that is rigid is merely losing the chance to improve its
delay. Such a combination of tolerance and rigidity would
probably reect the lack of adaptive hardware and software,
which we believe will soon be cheap and standard enough to
become fairly ubiquitous. We are thus led to the prediction
that there will be two dominant classes of tra�c in the net-
work: intolerant and rigid clients, and tolerant and adaptive
clients. We predict that these two classes will likely request
very di�erent service commitments from the network. Thus,
these basic considerations about delay and how clients deal
with it have produced a taxonomy of network clients that
guides the goals of our architecture.

Before turning to the issue of service commitments, let
us note that one of the key di�erences between real-time
applications and the traditional datagram applications lies
in the nature of the o�ered tra�c. Data tra�c is typically
sporadic and unpredictable. In contrast, real-time appli-
cations often have some intrinsic packet generation process
which is long lasting compared to the end-to-end delays of
the individual packets. This process is a consequence of the
speci�cs of the application; for example the coding algorithm
for video, along with the nature of the image, will determine
the packet generation process. Furthermore, the character-
ization of this generation process can often be closely rep-
resented by some tra�c �lter (such as a token bucket to
be described later), and/or be derived from measurement.
When a network has some knowledge of the tra�c load it
will have to carry, it can allocate its resources in a much
more e�cient manner.

3 Service Commitments

Clearly, for a network to make a service commitment to a
particular client, it must know beforehand some characteri-

4Yet another example of an adaptive packet voice application is
described in Reference [5].



zation of the tra�c that will be o�ered by that client. For
the network to reliably meet its service commitment, the
client must meet its tra�c commitment (i.e., its tra�c must
conform to the characterization it has passed to the net-
work). Thus, the service commitment made to a particular
client is predicated on the tra�c commitment of that client.
The question is, what else is the service commitment predi-
cated on (besides the obvious requirement that the network
hardware function properly)?

One kind of service commitment, which we will call guar-
anteed service, depends on no other assumptions. That is,
if the network hardware is functioning and the client is con-
forming to its tra�c characterization, then the service com-
mitment will be met. Notice that this level of commitment
does not require that any other network clients conform to
their tra�c commitments. Guaranteed service is appropri-
ate for intolerant and rigid clients, since they need absolute
assurances about the service they receive.

However, guaranteed service is not necessarily appropri-
ate for tolerant and adaptive clients. Adaptive clients, by
adjusting their play-back point to reect the delays their
packets are currently receiving, are gambling that the net-
work service in the near future will be similar to that deliv-
ered in the recent past. Any violation of that assumption in
the direction of increased delays will result in a brief degra-
dation in the application's performance as packets begin
missing the play-back point. The client will then readjust
the play-back point upward to reect the change in service,
but there will necessarily be some momentary disruption
in service. This will occur even if the network is meeting
its nominal service commitments (based on the bounds on
the service), because an adaptive application is typically ig-
noring those a priori bounds on delay and adapting to the
current delivered service.

Thus, as long as the application is gambling that the re-
cent past is a guide to the near future, one might as well
de�ne a class of service commitment that makes the same
gamble. Our second kind of service commitment is called
predicted service. This level of commitment has two com-
ponents. First, as stated above, the network commits that
if the past is a guide to the future, then the network will
meet its service characterization. This component embod-
ies the fact that the network can take into account recent
measurement on the tra�c load in guessing what kind of
service it can deliver reliably. This is in marked contrast
to the worst-case analysis that underlies the guaranteed ser-
vice commitment. Second, the network attempts to deliver
service that will allow the adaptive algorithms to minimize
their play-back points. (This is the same as saying that the
service will attempt to minimize the post facto delay bound.)
Obviously, when the overall network conditions change, the
quality of service must also change; the intent of the second
component of the commitment is that when network con-
ditions are relatively static, the network schedules packets
so that the current post facto delay bounds (which are typi-
cally well under the long-term a priori bounds that are part
of the service commitment) are small.

Notice that predicted service has built into it very strong
implicit assumptions about the behavior of other network
clients by assuming that the network conditions will remain
relatively unchanged, but involves very few explicit assump-
tions about these other network clients; i.e., their current
behavior need not be explicitly characterized in any precise
manner. Thus, for predicted service, the network takes steps
to deliver consistent performance to the client; it avoids the

hard problem, which must be faced with guaranteed service,
of trying to compute a priori what that level of delivered
service will be.

We have thus de�ned two sorts of real time tra�c, which
di�er in terms of the service commitment they receive. There
is a third class of tra�c that we call datagram tra�c, to
which the network makes no service commitments at all,
except to promise not to delay or drop packets unnecessar-
ily (this is sometimes called best e�ort service).

We now have the �rst component of our architecture,
the nature of the service commitment. The challenge, now,
is to schedule the packet departures at each switch so that
these commitments are kept. For the sake of clarity, we �rst
consider, in Section 4, how to schedule guaranteed tra�c
in a network carrying only guaranteed tra�c. In Sections
5 and 6 we then consider how to schedule predicted tra�c
in a network carrying only predicted tra�c. After we have
assembled the necessary components of our scheduling algo-
rithm we then, in Section 7, present our uni�ed scheduling
algorithm which simultaneously handles all three levels of
service commitment.

As we present these scheduling schemes, we also lay the
groundwork for the other key pieces of the architecture, the
speci�cs of the service interface (which must relate closely
to the details of the service commitment) and the method
to control the admission of new sources.

4 Scheduling Algorithms for Guaranteed Tra�c

In this section we �rst describe a tra�c �lter and then a
scheduling algorithm that together provide guaranteed ser-
vice.

As discussed briey in Section 3, a network client must
characterize its tra�c load to the network, so that the net-
work can commit bandwidth and manage queues in a way
that realizes the service commitment. We use a particular
form of tra�c characterization called a token bucket �lter.
A token bucket �lter is characterized by two parameters, a
rate r and a depth b. One can think of the token bucket
as �lling up with tokens continuously at a rate r, with b
being its maximal depth. Every time a packet is generated
it removes p tokens from the bucket, where p is the size
of the packet. A tra�c source conforms to a token bucket
�lter (r; b) if there are always enough tokens in the bucket
whenever a packet is generated.

More precisely, consider a packet generation process with
ti and pi denoting the generation time and size, respectively,
of the i'th packet. We say that this tra�c source conforms
to a token bucket �lter (r; b) of rate r and depth b if the
sequence ni de�ned by n0 = b and ni = MIN [b; ni�1 +
(ti � ti�1)r � pi] obeys the constraint that ni � 0 for all
i. The quantities ni, if nonnegative, represent the number
of tokens residing in the bucket after the i'th packet leaves.
For a given tra�c generation process, we can de�ne the non-
increasing function b(r) as the minimal value such that the
process conforms to a (r; b(r)) �lter.

In recent years, several time-stamp based algorithms have
been developed. These algorithms take as input some preas-
signed apportionment of the link expressed as a set of rates
r� (where � labels the ows); the resulting delays depend
on the bucket sizes b�(r�).

One of the �rst such time-stamp algorithms was the Fair
Queueing algorithm introduced in Reference [4]. This al-
gorithm was targeted at the traditional data service archi-



tecture, and so involved no preallocation of resources (and
thus had each r� = � where � denotes the link speed).
In addition, a weighted version of the Fair Queueing algo-
rithm (which we refer to as WFQ), in which the r� need
not all be equal, was also briey described in Reference [4]5.
The VirtualClock algorithm, described in References [25, 26],
involves an extremely similar underlying packet scheduling
algorithm, but was expressly designed for a context where
resources were preapportioned and thus had as a fundamen-
tal part of its architecture the assumption that the shares r�

were arbitrary. Parekh and Gallager, in Reference [19], rein-
troduce the WFQ algorithm under the name of packetized
generalized processor sharing (PGPS). They have proven an
important result that this algorithm, under certain condi-
tions, can deliver a guaranteed quality of service ([20]). We
present a brief summary of the WFQ algorithm below, since
we make use of it in our overall scheduling algorithm; see
References [4, 20] for more details.

First, consider some set of ows and a set of clock rates
r�. The clock rate of a ow represents the relative share of
the link bandwidth this ow is entitled to; more properly, it
represents the proportion of the total link bandwidth which
this ow will receive when it is active. By assigning it a
clock rate r� the network commits to provide to this ow
an e�ective throughput rate no worse than (�r�)=(

P
�
r�)

where the sum in the denominator is over all currently active
ows.

This formulation can be made precise in the context of a
uid ow model of the network, where the bits drain contin-
uously out of the queue. Let t�i and p�i denote the generation
time and size, respectively, of the i'th packet arriving in the
�'th ow. We de�ne the set of functions m�(t), which char-
acterize at any time the backlog of bits which each source
has to send, and set m�(0) = 0. We say that a ow is active
at time t if m�(t) > 0; let A(t) denote the set of active ows.
Then the dynamics of the system are determined as follows.
Whenever a packet arrives, m must discontinuously increase
by the packet size: m�(t+) = m�(t�) + pi if t = t�i , where
m�(t+) and m�(t�) refer to right hand and left hand limits
of m� at t. At all other times, we know that the bits are
draining out of the queues of the active ows in proportion
to the clock rates of the respective ows:

@m�(t)

@t
=

�r�P
�2A(t)

r�
if � 2 A(t) ;

@m�(t)

@t
= 0 if � 62 A(t)

This completely characterizes the dynamics of the uid
ow model. Parekh and Gallager have shown the remarkable
result that, in a network with arbitrary topology, if a ow
gets the same clock rate at every switch and the sum of
the clock rates of all the ows at every switch is no greater
than the link speed, then the queueing delay of that ow is
bounded above by b�(r�)=r�. Intuitively, this bound is the
delay that would result from an instantaneous packet burst
of the token bucket size being serviced by a single link of
rate r�; the queueing delays are no worse than if the entire
network were replaced by a single link with a speed equal
to the ow's clock rate r�. This result can be motivated by
noting that if the source tra�c were put through a leaky
bucket �lter of rate r at the edge of the network6, then the

5The weighted version of Fair Queueing is mentioned on page 24
of Reference [4], though not referred to by the name Weighted Fair
Queueing.

6In a uid ow version of a leaky bucket of rate r, the bits drain
out at a constant rate r and any excess is queued.

ow would not su�er any further queueing delays within the
network since the instantaneous service rate given to this
ow at every switch along the path would be at least r.
Thus, all of the queueing delay would occur in the leaky
bucket �lter and, if the ow obeyed an (r; b) token bucket
�lter, then the delay in the leaky bucket �lter would be
bounded by b=r. Notice that the delay bound of a particular
ow is independent of the other ows' characteristics; they
can be arbitrarily badly behaved and the bound still applies.
Furthermore, these bounds are strict, in that they can be
realized with a set of greedy sources which keep their token
buckets empty.

The previous paragraphs describe WFQ in the uid ow
approximation. One can de�ne the packetized version of the
algorithm in a straightforward manner. De�ne ��i (t) for all
t � t�i as the number of bits that have been serviced from
the ow � between the times t�i and t. Associate with each
packet the function E�

i (t) = (m�(t�i )� ��i (t))=r
� where we

take the right-hand limit of m; this number is the level of
backlog ahead of the packet i in the ow �'s queue divided
by the ow's share of the link, and can be thought of as an
expected delay until departure for the last bit in the packet.
The packetized version of WFQ is merely, at any time t
when the next packet to be transmitted must be chosen, to
select the packet with the minimal E�

i (t). This algorithm
is called a time-stamp based scheme because there is an al-
ternative but equivalent formulation in which each packet is
stamped with a time-stamp as it arrives and then packets
are transmitted in increasing order of time-stamps; see Ref-
erences [4, 20] for details on this formulation. Parekh and
Gallager have shown that a bound, similar to the uid ow
bound, applies to this packetized algorithm as well. How-
ever, the formulae for the delays in the packetized case are
signi�cantly more complicated; see Reference [20] for details.

To understand the relation between the clock rate r, the
bucket size b(r) and the resultant delay, consider what hap-
pens to a burst of packets. The packet that receives the
highest queueing delay is the last packet of a burst. The
bound on the jitter is proportional to the size of the burst
and inversely proportional to the clock rate. The means by
which the source can improve the worst case bound is to
increase its r parameter to permit the burst to pass through
the network more quickly.

Since the bounds given in guaranteed service must be
worst-case bounds (i.e. the bounds must apply for all possi-
ble behaviors of the other sources), the primary function of
a scheduling algorithm designed to deliver guaranteed ser-
vice is to isolate ows from each other, so that a ow can
have only a limited negative e�ect on other ows. The WFQ
scheme isolates each source from the others by providing it a
speci�ed share of the bandwidth under overload conditions.
The work of Parekh and Gallager provides a way for the
source to compute the maximum queueing delay which its
packets will encounter, provided that the source restricts it-
self to a (r; b) token bucket �lter. But the network's schedul-
ing algorithm does not depend on this �lter. Indeed, an im-
portant point about this form of guaranteed service is that
the tra�c �lters do not play any role in packet scheduling.

Given that there exists an algorithm that can deliver
guaranteed service, why not deliver guaranteed service to
all clients? Most bursty statistical generation processes are
such that any r which produces a reasonably small ratio
b(r)=r (so that the resulting delay bound is reasonable) is
much greater than the average data rate of that source.
Thus, if guaranteed service were the only form of real-time



service available, then the overall level of network utiliza-
tion due to real-time tra�c would be well under capacity,
perhaps 50% or less.

One design alternative would be to assume that data-
gram tra�c would comprise the rest of the tra�c, �lling
up the unused capacity. While we certainly do not have a
clear picture of the nature of the o�ered load in future ISPN
networks, we think that basing the case for a scheduling al-
gorithm on the expectation that the volume of datagram
tra�c will �ll half the capacity of the network is, at best, a
gamble. Consequently, we propose to also o�er another class
of real-time service, predicted service. Note that in o�ering
this service we are attempting to increase the utilization of
the network while still meeting the service needs of real-time
clients.

5 Scheduling Algorithms for Predicted Service

We motivate the development of our scheduling algorithm
by considering the following gedanken experiment. Consider
a single-link network carrying some number of clients, and
assume that all sources conform to some tra�c �lter such
as the token buckets described above. Furthermore, assume
that all the clients are bursty sources, and wish to mix their
tra�c so that in the aggregate they achieve a better use
of bandwidth and a controlled delay. How does one best
schedule the packets to achieve low post facto delay bounds
(or, equivalently, minimal play-back points)?

What behavior does the WFQ algorithm induce? When-
ever there is a backlog in the queue, packets leave the queue
at rates proportional to their clock rates. Consider a mo-
ment when all sources are transmitting uniformly at their
clock rates except for one which emits a burst of packets.
The WFQ algorithm would continue to send the packets
from the uniform sources at their clock rates, so their pack-
ets are not queued for any signi�cant time whereas the back-
log of packets from the bursty source will take a long time
to drain. Thus, a burst by one source causes a sharp in-
crease in the delay seen by that source, and has minimal
e�ects on the delays seen by the other sources. The median
delay will be rather low, assuming the network link is not
over-committed, but a burst will induce jitter directly, and
mostly, a�ecting only the source that emitted the burst.

WFQ provides for a great degree of isolation, so that
sources are protected from other sources' bursts. Is this the
best approach to obtaining the lowest playback point when
a number of sources are sharing a link? We argue that this
isolation, while necessary for providing guaranteed service,
is counterproductive for predicted service.

The nature of play-back real-time applications allows the
scheduling algorithm to delay all packets up to the play-back
point without adversely a�ecting the application's perfor-
mance. Thus, one can think of the play-back point as a
deadline. For such problems, the standard earliest-deadline-
�rst scheduling algorithm, as described in Reference [17], has
been proven optimal. However, in our gedanken experiment
the play-back points are not set a priori, as in the above
reference, but are rather the result of the clients adapting
to the current level of delay.

Let us consider a simple example where a class of clients
have similar service desires. This implies that they are all
satis�ed with the same delay jitter; thus they all have the
same play-back point and thus the same deadline. If the
deadline for each packet is a constant o�set to the arrival

scheduling mean 99.9 %ile
WFQ 3.16 53.86
FIFO 3.17 34.72

Table 1: The mean and 99.9'th percentile queueing delays
(measured in the unit of per packet transmission time) for
a sample ow under the WFQ and FIFO scheduling algo-
rithms. The link is 83.5% utilized.

time, the deadline scheduling algorithm becomes, surpris-
ingly, FIFO; the packet that is closest to its deadline is the
one that arrived �rst. Hyman, Lazar, and Paci�ci, in Ref-
erence [13], also make this observation that FIFO is merely
a special case of deadline scheduling.

Consider what happens when we use the FIFO queue-
ing discipline instead of WFQ. Now when a burst from
one source arrives, this burst passes through the queue in
a clump while subsequent packets from the other sources
are temporarily delayed; this latter delay, however, is much
smaller than the delay that the bursting source would have
received under WFQ. Thus, the play-back point need not
be moved out as far to accommodate the jitter induced
by the burst. Furthermore, the particular source produc-
ing the burst is not singled out for increased jitter; all the
sources share in all the jitter induced by the bursts of all the
sources. Recall that when the packets are of uniform size,
the total queueing delay in any time period (summed over
all ows) is independent of the scheduling algorithm. The
FIFO algorithm splits this delay evenly, whereas the WFQ
algorithm assigns the delay to the ows that caused the mo-
mentary queueing (by sending bursts). When the delays are
shared as in FIFO, in what might be called a multiplexing
of bursts, the post facto jitter bounds are smaller than when
the sources are isolated from each other as in WFQ. This
was exactly our goal; under the same link utilization, FIFO
allows a number of sources aggregating their tra�c to obtain
a lower overall delay jitter.

In order to test our intuition, we have simulated both
WFQ and FIFO algorithms. The Appendix contains a com-
plete description of our simulation procedure; we only present
the results here. We consider a single link being utilized by
10 ows, each having the same statistical generation process.
In Table 1 we show the mean and 99.9'th percentile queue-
ing delays for a sample ow (the data from the various ows
are similar) under each of the two scheduling algorithms.
Note that while the mean delays are about the same for
the two algorithms, the 99.9'th percentile delays are signi�-
cantly smaller under the FIFO algorithm. This con�rms our
analysis above.

The FIFO queue discipline has generally been consid-
ered ine�ective for providing real-time service; in fact, it
has been shown in certain circumstances to be the worst
possible algorithm ([1]). The reason is that if one source in-
jects excessive tra�c into the net, this disrupts the service
for everyone. This assessment, however, arises from a failure
to distinguish the two separate objectives of any tra�c con-
trol algorithm, isolation and sharing. Isolation is the more
fundamental goal; it provides guaranteed service for well-
behaved clients and quarantines misbehaving sources. But
sharing, if it is performed in the context of an encompassing
isolation scheme, performs the very di�erent goal of mixing
tra�c from di�erent sources in a way that is bene�cial to



all; bursts are multiplexed so that the post facto jitter is
smaller for everyone. The FIFO scheme is an e�ective shar-
ing scheme, but it does not provide any isolation. WFQ, on
the other hand, is an e�ective method for isolation. If we
organize the tra�c into classes of clients with similar service
requirements, we �nd that this reasoning leads to a nested
scheme in which the queuing decision is in two steps: a �rst
step to insure isolation of classes, and then a particular shar-
ing method within each class.

FIFO is not the only interesting sharing method. An-
other sharing method is priority, which has a very di�erent
behavior than FIFO. The goal of FIFO is to let every source
in a common class share equally in the jitter. In priority,
one class acquires jitter of higher priority classes, which con-
sequently get much lower jitter. In one direction priority is
considered a sharing mechanism, but in the other it is an iso-
lation mechanism, i.e. lower priority tra�c can never a�ect
the performance of higher priority one.

Why might a priority algorithm be of mutual bene�t?
The bene�t of lower jitter is obvious; the bene�t of higher
jitter would presumably be a lower cost for the service. A
source with more tolerance for jitter (or for higher overall
delay) might be very happy to obtain a cheaper service in
exchange for taking the jitter of some other sources.

One can think in general of scheduling algorithms as rep-
resenting methods for jitter shifting, in which explicit actions
are taken to transfer the jitter among ows in a controlled
and characterized way. One could invent a wide range of
scheduling schemes that reorder the queue in speci�c ways,
as we discuss in the section on related work. They should
all be examined from two perspectives. First, how and to
what extent do they perform isolation? Second, how and to
what extent do they provide sharing?

6 Multi-Hop Sharing

One of the problems with the FIFO algorithm is that if
we generalize our gedanken experiment to include several
links, then the jitter tends to increase dramatically with the
number of hops, since the packet has a separate opportunity
for uncorrelated queueing delays at each hop.

In fact, it is not clear that this increase in jitter need
occur. Going through more hops provides more opportuni-
ties for sharing, and hence more opportunities for reducing
jitter. The key is to correlate the sharing experience which
a packet has at the successive nodes in its path. We call this
scheme FIFO+. In priciple, FIFO+ is very similar to the
least slack scheduling algorithms for manufacturing systems
discussed in Reference [18].

In FIFO+, we try to induce FIFO-style sharing (equal
jitter for all sources in the aggregate class) across all the hops
along the path to minimize jitter. We do this as follows. For
each hop, we measure the average delay seen by packets in
each priority class at that switch. We then compute for
each packet the di�erence between its particular delay and
the class average. We add (or subtract) this di�erence to
a �eld in the header of the packet, which thus accumulates
the total o�set for this packet from the average for its class.
This �eld allows each switch to compute when the packet
should have arrived if it were indeed given average service.
The switch then inserts the packet in the queue in the order
as if it arrived at this expected time.

To test this algorithm, we have simulated its perfor-
mance on a network as shown on Figure 1. This network

has four equivalent 1Mbit/sec inter-switch links, and each
link is shared by 10 ows. There are, in total, 22 ows; all
of them have the same statistical generation process (de-
scribed in the Appendix) but they travel di�erent network
paths. 12 traverse only one inter-switch link, 4 traverse two
inter-switch links, 4 traverse three inter-switch links, and
2 traverse all four inter-switch links. Table 2 displays the
mean and 99.9'th percentile queueing delays for a single sam-
ple ow for each path length (the data from the other ows
are similar). We compare the WFQ, FIFO, and FIFO+ al-
gorithms (where we have used equal clock rates in the WFQ
algorithm). Note that the mean delays are comparable in
all three cases. While the 99.9'th percentile delays increase
with path length for all three algorithms, the rate of growth
is much smaller with the FIFO+ algorithm.

As the simulation shows, the e�ect of FIFO+, as com-
pared to FIFO, is to slightly increase the mean delay and jit-
ter of ows on short paths, slightly decrease the mean delay
and signi�cantly decrease the jitter of ows on long paths,
which means that the overall delay bound goes down and
the precision of estimation goes up on long paths. When we
compare the implementation of the two schemes, they di�ers
in one important way { the queue management discipline is
no longer trivial (add the packet to the tail of the queue for
the class) but instead requires that the queue be ordered
by deadline, where the deadline is explicitly computed by
taking the actual arrival time, adjusting this by the o�set in
the packet header to �nd the expected arrival time, and then
using this to order the queue. This has the possibility of a
more expensive processing overhead, but we believe that ef-
�cient coding methods can implement this in software with
the same performance as current packet switches achieve.

We have now extended our predicted service class to mul-
tiple hops, using FIFO+ as an explicit means to minimize
the jitter and to obtain as much bene�t as possible from
sharing. Compare this service to the guaranteed service,
where the service is speci�ed by the worst-case bounds and
the focus is on scheduling algorithms that provide isolation
between the various ows. In our gedanken experiment for
predicted service, we assume that (1) adequate isolation is
being provided by the enforcement of tra�c �lters before or
at the entrance to the network, and (2) the overall network
conditions are not changing rapidly. Here, the challenge is to
share the link e�ectively in a way that minimizes the play-
back point. As we have seen, FIFO is a e�ective sharing
mechanism. The modi�cation of FIFO+ merely extends the
concept of sharing from sharing between ows at a single
hop to sharing between hops.

7 Uni�ed Scheduling Algorithm

In the previous three sections we have presented scheduling
algorithms that each handle a single kind of service com-
mitment. In this section we combine these algorithms into a
uni�ed scheduling algorithm that handles guaranteed, pre-
dicted, and datagram service.

Consider a set of real-time ows, some requesting guaran-
teed service and some requesting predicted service, and also
a set of datagram sources. We �rst describe the scheduling
algorithm as implemented at each switch and then discuss
how this �ts into our overall service architecture.

The scheduling algorithm at a single switch is quite straight-
forward. The basic idea is that we must isolate the tra�c
of guaranteed service class from that of predicted service



Host-1 Host-2 Host-3 Host-4 Host-5

S-1 S-2 S-3 S-4 S-5

Figure 1: Network topology used for data in Table 2.

Path Length
1 2 3 4

scheduling mean 99.9 %ile mean 99.9 %ile mean 99.9 %ile mean 99.9 %ile
WFQ 2.65 45.31 4.74 60.31 7.51 65.86 9.64 80.59
FIFO 2.54 30.49 4.73 41.22 7.97 52.36 10.33 58.13
FIFO+ 2.71 33.59 4.69 38.15 7.76 43.30 10.11 45.25

Table 2: The mean and 99.9'th percentile queueing delays (measured in the unit of per packet transmission time) for four
sample ows of di�erent path lengths under the WFQ, FIFO, and FIFO+ scheduling algorithms. The network con�guration
is shown in Figure 1. Each inter-switch link is 83.5% utilized.

class, as well as isolate guaranteed ows from each other.
Therefore we use the time-stamp based WFQ scheme as a
framework into which we �t the other scheduling algorithms.
Each guaranteed service client � has a separate WFQ ow
with some clock rate r�. All of the predicted service and
datagram service tra�c is assigned to a pseudo WFQ ow,
call it ow 0, with, at each link, r0 = ��

P
�
r� where the

sum is over all the guaranteed ows passing through that
link. Inside this ow 0, there are a number of strict pri-
ority classes, and within each priority class we operate the
FIFO+ algorithm. Once we have assigned each predictive
ow (and also the datagram tra�c) to a priority level at each
switch, the scheduling algorithm is completely de�ned. We
now discuss how this algorithm �ts into our overall service
architecture.

We have discussed the function of the FIFO+ scheme
above. What is the role of the priority classes? Remember
above that the e�ect of priority is to shift the jitter of higher
priority class tra�c to the lower priority classes. We assign
datagram tra�c to the lowest priority class. There are K
other priority levels above the datagram priority level.

At the service interface, we provide K widely spaced tar-
get delay bounds Di for predicted service (at a particular
switch). The priorities are used to separate the tra�c for
the di�erent K classes. These bounds Di are not estimates
of the actual delivered delays. Rather, they are a priori up-
per bounds and the network tries, through admission poli-
cies, to keep queueing delays at each switch for a particular
class i well below these bounds Di. We mentioned earlier
that adaptive applications have limits to their adaptability;
these bounds Di are indicative of such limits. A predicted
service ow is assigned a priority level at each switch (not
necessarily the same level in every switch); the a priori delay
bound advertised to a predicted service ow is the sum of the
appropriate Di along the path. The delay bound advertised
to a guaranteed ow is the Parekh-Gallager bound.

This scheme has the problem that, since delay is additive,
asking for a particular Di at a given switch does not directly
mean that Di is the target delay bound for the path as a

whole. Rather, it is necessary to add up the target delays
at each hop to �nd the target upper bound for the path.
We expect the true post facto bounds over a long path to be
signi�cantly lower than the sum of the bounds Di at each
hop. But we suggest that, since this is an adaptive service,
the network should not attempt to characterize or control
the service to great precision, and thus should just use the
sum of the Di's as the advertised bound.

Consider in more detail how the priority scheme works.
If the highest priority class has a momentary need for extra
bandwidth due to a burst by several of its sources, it steals
the bandwidth from the lower classes. The next class thus
sees as a baseline of operation the aggregate jitter of the
higher class. This gets factored together with the aggregate
burstiness of this class to produce the total jitter for the
second class. This cascades down to the datagram tra�c,
which gets whatever bandwidth is leftover and su�ers from
the accumulated jitter. As we argue later, the datagram
tra�c should probably be given an average rate of at least
10% or so, both to insure that it makes some progress on the
average and to provide a reasonable pool of bandwidth for
the higher priority tra�c to borrow from during momentary
overloads.

For a lower priority class, what source of jitter will dom-
inate its observed behavior: its intrinsic aggregate behavior
or the jitter shifted from the higher priority classes? If the
target goals for jitter are widely spaced (and for the pur-
pose of rough estimation as we suggested above they proba-
bly need be no closer than an order of magnitude) then the
exported jitter from the higher priority class should be an
order of magnitude less than the intrinsic behavior of the
class, and the classes should usually operate more or less
independently. Thus, a particular class is isolated from the
lower priority classes by the priority scheduling algorithm
and is in e�ect isolated from the higher priority classes be-
cause their jitter will be so much smaller than that of the
particular class.

We have simulated this uni�ed scheduling algorithm us-
ing the same simulation con�guration as used for Table 2,



Guaranteed Service Predicted Service
type path delay measure P-G type path delay measure

length mean 99.9 %ile max bound length mean 99.9 %ile max
Peak 4 8.07 14.41 15.99 23.53 High 4 3.06 8.20 11.13
Peak 2 2.91 8.12 8.79 11.76 High 2 1.60 5.83 7.48

Average 3 56.44 270.13 296.23 611.76 Low 3 19.22 104.83 148.7
Average 1 36.27 206.75 247.24 588.24 Low 1 7.43 79.57 108.56

Table 3: The queueing delay measurement of several sample ows in simulating the uni�ed scheduling algorithm. The network
con�guration is shown in Figure 1. Each inter-switch link is utilized over 99%.

that has 22 real-time ows with identical statistical gener-
ation processes but which traverse di�erent network paths.
To these 22 real-time ows we also added 2 datagram TCP
connections. In this simulation, 5 of the real-time ows are
guaranteed service clients; 3 of these have a clock rate equal
to their peak packet generation rate (we denote such ows
by Guaranteed-Peak) and the other 2 have a clock rate equal
to their average packet generation rate (we denote such ows
by Guaranteed-Average). See the Appendix for details on
the statistical generation process and the values of the av-
erage and peak rates. The remaining 17 real-time ows are
predicted service clients served by two priority classes, 7
ows are in the high priority class (we denote such ows by
Predicted-High) and the other 10 ows are in the low pri-
ority class (we denote such ows by Predicted-Low). If we
look at the tra�c traversing each link, it consists of one data-
gram connection and 10 real-time ows: 2 Guaranteed-Peak,
1 Guaranteed-Average, 3 Predicted-High, and 4 Predicted-
Low.

Sample results of the simulation are presented in Table
3 (where P-G bound is the computed Parekh-Gallager delay
bound). We see that all of the guaranteed service ows re-
ceived worst-case delays that were well within the Parekh-
Gallager bounds. Not surprisingly, the Guaranteed-Peak
ows experienced much lower delays than the Guaranteed-
Average ows. Similarly, the Predicted-High ows expe-
rienced lower delays than the Predicted-Low ows. For
the given load pattern described here, the delays of the
Predicted-High ows were lower than those of the compara-
ble Guaranteed-Peak ows, and the delays of the Predicted-
Low ows were lower than those of the comparable Guaranteed-
Average ows; however, this relation between the delays of
the two classes is an artifact of the particular load pattern
and is not necessarily indicative of a general pattern.

Not shown in Table 3 is the performance of the data-
gram tra�c which experienced a very low drop rate, around
0.1%. The overall utilization of the network was over 99%,
with 83.5% of this being real-time tra�c. It is important to
note that if all of the real-time ows had requested guaran-
teed service with a clock rate equal to their peak rate, the
network could accomodate many fewer real-time ows and
the utilization due to real-time tra�c would be reduced to
roughly 50%. Thus, providing predicted service allows the
network to operate with a higher degree of real-time tra�c
than would be allowed by a pure guaranteed service o�er-
ing the same delay bounds. These results, though woefully
incomplete, are qualitatively consistent with our analysis.

We are currently attempting to more fully validate our
design through simulation, and we hope to report on our
progress in a subsequent publication. Note that much of the
challenge here is determining how to evaluate our proposal.

There is no widely accepted set of benchmarks for real-time
loads, and much of the novelty of our uni�ed scheduling
algorithm is our provision for predicted service, which can
only be meaningfully tested in a dynamic environment with
adaptive clients.

We have now completed the �rst parts of our architec-
ture. We have described a model for the low-level packet
forwarding algorithm, which is a sharing discipline inside an
isolation discipline, and we have provided a particular ex-
ample of such a scheme, which provides both of our service
commitment models, guaranteed and predicted. The scheme
provides several predicted service classes with di�erent delay
bounds, and uses a particular technique (FIFO+) to provide
low jitter, and to provide a jitter bound that does not vary
strongly with the number of hops in the paths.

8 Service Interface

As a part of the de�nition of the uni�ed scheduling algo-
rithm, we have also de�ned our service interface. In fact,
there are two forms for the service interface, one for guar-
anteed service and another for predicted service.

For guaranteed service, the interface is simple: the source
only needs to specify the needed clock rate r�, then the
network guarantees this rate. The source uses its known
value for b�(r�) to compute its worst case queueing delay.
If the delay is unsuitable, it must request a higher clock
rate r�. The network does no conformance check on any
guaranteed ow, because the ow does not make any tra�c
characterization commitment to the network.

For predicted service, the service interface must charac-
terize both the tra�c and the service. For the characteriza-
tion of the tra�c we have the source declare the parameters
(r; b) of the token bucket tra�c �lter to which it claims its
tra�c will conform. Note that in the guaranteed case the
client did not need to inform the network of its bucket size b.
Separately, the source must request the needed service. This
involves selecting a suitable delay D and a target loss rate
L the application can tolerate. The network will use these
numbers to assign the source to an aggregate class at each
switch for sharing purposes. Thus, for predicted service, the
parameters of the service interface are the �lter rate and size
(r; b) and the delay and loss characteristics (D;L).

To provide predicted service, the network must also en-
force the tra�c commitments made by the clients. Enforce-
ment is carried out as follows. Each predicted service ow
is checked at the edge of the network (i.e., the �rst switch
the tra�c passes through) for conformance to its declared
token bucket �lter; nonconforming packets are dropped or
tagged. This conformance check provides the necessary iso-
lation that is a mendatory ticket for entering a shared world.



After that initial check, conformance is never enforced at
later switches; this is because any later violation would be
due to the scheduling policies and load dynamics of the net-
work and not the generation behavior of the source.

In the case of the predicted service, specifying the token
bucket tra�c �lter also permits the network to estimate if it
can carry the new source at the requested rate and burstiness
and still meet the service targets for this, and all of the
existing, ows. This is the function of the last part of the
architecture, the ow admission control computation.

9 Admission Control

While we stated earlier that we would not address the ne-
gotiation process for the establishment of service commit-
ments, we must at least address the conditions under which
a network accepts or denies a request for service, without
necessarily specifying the exact dynamics of that exchange.

There are two criteria to apply when deciding whether
or not to admit additional ows into the network. The �rst
admission control criterion is that we should reserve no more
than 90% of the bandwidth for real-time tra�c, letting the
datagram tra�c have access to at least 10% of the link; while
the numerical value, 10%, of this quota is completely ad hoc
and experience may suggest other values are more e�ective,
we do believe that it is crucial to have such a quota. This
quota ensures that the datagram service remains operational
at all times; having the datagram tra�c completely shut out
for arbitrarily long periods of time will likely put impossible
demands on the datagram transport layers. In addition, the
datagram quota ensures that there is enough spare capacity
to accommodate sizable uctuations in the predicted service
tra�c. The second admission control criterion is that we
want to ensure that the addition of a ow does not increase
any of the predicted delays over the bounds Di.

We now give an example, albeit super�cial, of how one
might make these criteria speci�c. Let �̂ denote the mea-
sured post facto bound on utilization on a link due to real-
time tra�c (in general, the hat symbol denotes measured

quantities), let d̂i denote the measured maximal delay of
the tra�c in class i, and let � denote the link speed. In
this example admission control criterion, a ow promising
to conform to a token bucket tra�c �lter (r; b) can be ad-
mitted to priority level i if (1) r + �̂ < :9�, and (2) b <

(Dj � d̂j)(�� �̂ � r) for each class j which is lower than or
equal in priority to level i. For the purposes of the computa-
tion in (2), a guaranteed service commitment is considered
to be higher in priority than all levels i. The �rst condition
guarantees that there is at least 10% of the link left over
for datagram tra�c. The second condition is a heuristic de-
signed to ensure that the delays will not violate the bounds
Dj once the new ow is admitted even if the new ow dis-
plays worst-case behavior. The key to making the predic-
tive service commitments reliable is to choose appropriately
conservative measures for �̂ and d̂j; these should not just be
averages but consistently conservative estimates. Knowing

how conservative to make the �̂ and d̂j may involve histor-
ical knowledge of the size of uctuations in network tra�c
and delay on various links.

This example is overly sketchy, and we have yet to simu-
late to see how this particular implementation of admission
control would function in a dynamic network. We o�er it
solely as an illustration of the considerations involved in
designing an admission control policy. It is clear that the

viability of our proposal rests on our ability to formulate
an admission control policy which will make the predicted
service class su�ciently reliable; specifying and validating
such an admission control policy is the focus of our current
work.

We have the following additional general comments on
admission control policies. It is not clear how precise such
an algorithm needs to be. If there is enough bandwidth to
meet most customer needs, and if only a small fraction of
tra�c needs the most demanding of the predicted service,
then a rough estimate may be adequate. In addition, we
are o�ering a general method which involves measuring the
behavior of the existing real-time tra�c, rather than using
the tra�c model speci�ed in the service interface, in decid-
ing whether to admit new tra�c. We use the worst-case
tra�c model only for the new source, which we cannot oth-
erwise characterize; once the new ow starts running, we
will be able to measure the aggregate tra�c with the new
ow and base further admission decisions on the most recent
measurement. This approach is important for two reasons.
First, since the sources will normally operate inside their
limits, this will give a better characterization and better
link utilization. Second, it matches what the clients them-
selves are doing, as they adapt the playback point to the
observed network tra�c. Having the network and the end-
points assess the tra�c in similar ways is likely to better
produce reasonable behavior.

10 Other Service Qualities

There are a number of other service features that have been
proposed in the context of real-time services. Here we wish
to mention them, although we do not discuss exactly how
to support them in the context of our scheme.

One goal is that if overload causes some of the packets
from a source to miss their deadline, the source should be
able to separate its packets into di�erent classes, to control
which packets get dropped. This idea can be incorporated
into our scheme by creating several priority classes with the
same target Di. Packets tagged as \less important" go into
the lower priority class, where they will arrive just behind
the more important packets, but with higher priority than
the classes with larger Di. It is obvious that use of priority
here can create a range of policies.

Another proposed service is that packets that are su�-
ciently late should be discarded internally, rather than be-
ing delivered, since in delivering them the network may use
bandwidth that could have been better used to reduce the
delay of subsequent packets. The o�set carried in the packet
in the FIFO+ scheme provides precisely the needed infor-
mation: if a packet accumulates a very large jitter o�set, it
is a target for immediate discarding. This idea has been pro-
posed elsewhere ([21]) but we observe that it �ts naturally
into the FIFO+ scheme.

A third service is that packets should be bu�ered in the
network if they might otherwise arrive early (before the play-
back point) so that the end-node need not provide the bu�er-
ing or estimate the current delay. We are not convinced that
this service is useful in general. With current memory costs,
bu�ering does not seem expensive. And while it might seem
nice for the network to relieve the destination equipment
from the need to estimate the delay, it cannot eliminate the
need for the end to adapt to a change in the delay. The
way in which the adaptation is done is application speci�c,



and must drive the decision as to when to change the actual
playback point. Once we give the destination enough con-
trol to perform this act, it seems obvious that it is just as
simple to have it perform the delay estimation as well.

11 Related Work

There has been a urry of recent work on supporting real-
time tra�c in packet networks. We cannot hope to cover
all of the relevant literature in this brief review; instead, we
mention only a few representative references.

Though the WFQ scheduling algorithm was �rst described
in Reference [4], Parekh and Gallager were the �rst to ob-
serve that, when the weights are chosen appropriately and
the tra�c sources conform to token bucket �lters, the schedul-
ing algorithm provides guaranteed service. WFQ is similar
in spirit, though not in detail, to the Delay-EDD scheme pro-
posed in Reference [7] and the MARS scheme proposed in
References [12, 13], in that the use of a deadline for schedul-
ing in Delay-EDD and MARS are analogous to the virtual
departure time-stamps used in WFQ. However, the algo-
rithms used to compute the time-stamps/deadlines are quite
di�erent in the three algorithms. Furthermore, the algo-
rithms use rather di�erent tra�c �lters to provide bounds.
Delay-EDD uses peak-rate limits (and a condition on the
average rate) whereas WFQ uses token buckets to provide
guaranteed bounds. MARS has no explicit tra�c �lters and
does not provide guaranteed bounds (i.e., no bounds that are
independent of the other sources' behavior); rather, MARS
has been shown through simulation with a particular set of
statistical sources to obey certain post facto bounds.

WFQ, Delay-EDD, and MARS are work-conserving schedul-
ing algorithms, in that the link is never left idle if there are
packets in the queue. Several non-work-conserving schedul-
ing algorithms have been proposed; for example, Stop-and-
Go queueing ([8, 9]), Hierarchical Round Robin ([16]), and
Jitter-EDD ([22]). All of these bear a super�cial similarity
to WFQ in that packets are scheduled according to some
deadline or frame; the di�erence is that the packets are not
allowed to leave early. These algorithms typically deliver
higher average delays in return for lower jitter. See the re-
view studies [24, 27] for a more detailed comparison of these
schemes.

The Jitter-EDD ([6, 22]) algorithm make use of a de-
lay �eld in the packet header to inform scheduling deci-
sions, much like the FIFO+ algorithm. Also, we should note
that the MARS scheduling algorithm uses FIFO scheduling
within a class of aggregated tra�c in a fashion very similar
to our use of FIFO within each predicted service class. Fur-
thermore, Reference [13] makes the same observation that
deadline scheduling in a homogeneous class leads to FIFO.
Reference [12] also observed that strict priority does not per-
mit as many sources to share a link as a scheme that more
actively manages jitter shifting. This work thus represents
an example of queue management to increase link loading,
as opposed to expanded service o�erings.

The general architecture of most of the proposals in the
literature, with Delay-EDD, Jitter-EDD, and HRR being
examples, focus primarily on the delivery of what we have
called guaranteed service to real-time tra�c (with datagram
tra�c comprising the rest of the network load). Therefore
the designs of the scheduling algorithms have been mainly
focused on performing isolation among ows, with MARS
being an exception. MARS promotes sharing within a tra�c

class by FIFO, and among di�erent classes by a somewhat
more complex scheme. Due to lack of isolation, however,
MARS does not provide guaranteed service. The MARS
algorithm, as well as the Statistical-EDD ([7]), attempt to
achieve statistical bounds, but these bounds are still com-
puted a priori (either through analytical approximation or
through the simulation of a particular statistical source).
There is implicit in these proposals the assumption that all
real-time network clients are, in our taxonomy, intolerant
and rigid. While the worst-case guaranteed bounds deliv-
ered by these mechanisms are appropriate for intolerant and
rigid clients, we have argued that there will likely be many
real-time clients who are both tolerant and adaptive.

There is only one other general architecture that has, as
one of its goals, the delivery of service more appropriate for
these tolerant and adaptive clients (and which we have called
predicted service); this is an unpublished scheme due to Ja-
cobson and Floyd which is currently being simulated and
implemented. Their work shares with our predicted service
mechanism the philosophy of measuring the current o�ered
load and delivered service in order to decide if new service
requests should be granted. Furthermore, their scheme also
involves the use of priorities as a combine sharing/isolation
mechanism. In contrast to our scheme, their scheme uses
enforcement of tra�c �lters at every switch as an additional
form of isolation, and they use round-robin instead of FIFO
within a given priority level7 . Moreover, there is no provi-
sion for guaranteed service in their mechanism.

References [10, 11] present admission control policies in-
volving the concept of equivalent capacity and then discuss
tra�c �lters (those references use the term access controls)
related to those admission control policies. While much of
the work is analytical, they also raise the possibility of using
measurements of current network conditions to inform the
various control policies.

12 Conclusion

This paper contains two contributions: an architecture and
a mechanism. Our architecture is perhaps the more funda-
mental piece, in that it de�nes the problem and provides a
framework for comparing various mechanistic alternatives.
The main novelty of our architecture, which arose from the
observation that many real-time applications can be made
adaptive, is the explicit provision for two di�erent kinds of
service commitments. The guaranteed class of service is
the traditional real-time service that is discussed in much of
the literature. Guaranteed service is based on characteriza-
tion of source behavior that then leads to static worst-case
bounds. The predicted class of service, which is designed for
adaptive and tolerant real-time clients, is explicitely spelt
out the �rst time in published literature. It replaces traf-
�c characterization with measurement in network admission
control. It also suggests applications replace static bounds
with adaptation in setting the play-back point. We con-
jecture that with predictive service and adaptive clients we
can achieve both higher link utilizations and superior appli-
cation performance (because the play-back points will be at
the de facto bounds, not the a priori worst-case bounds).

7More speci�cally, they combine the tra�c in each priority level
into some number of aggregate groups, and do FIFO within each
group (they use the term class, but in this paper we have used that
term with a di�erent meaning) and round-robin among the groups.
The enforcement of tra�c �lters mentioned above is applied to each
group.



Our mechanism is both an existence proof that our ar-
chitecture can be realized, and perhaps a useful artifact in
its own right. The mechanism's scheduling algorithms are
built around the recognition that the principles of isolation
and sharing are distinct and both play important roles when
sources are bursty and bandwidth is limited.

Isolation is fundamental and mandatory for any tra�c
control algorithm. The network cannot make any commit-
ments if it cannot prevent the unexpected behavior of one
source from disrupting others. Sharing is important but not
fundamental. If bandwidth were plentiful, e�ective behavior
could be obtained by allocating to each source its peak rate;
in this case sharing need not be considered. Note, however,
that plentiful bandwidth does not eliminate the need for iso-
lation, as we still need to ensure that each source does not
use more than its allocated share of the bandwidth. Thus,
careful attention to sharing arises only when bandwidth is
limited. In environments like LANs, it may be more cost-
e�ective to over-provision than to implement intricate shar-
ing algorithms. One should therefore embed sharing into
the architecture only with caution.

We have proposed a particular scheme for sharing, which
seems general enough that we propose that the control �eld
(the jitter o�set) be de�ned as part of the packet header.
But we note that, if a subnetwork naturally produces very
low jitters, it could just ignore the �eld and operate in some
simple mode like FIFO. When a subnetwork has these very
low natural jitters, it will not have enough queueing to re-
move most of the accumulated jitter anyway, and the error
introduced by ignoring the �eld should be minor. Thus our
sharing proposal is half architecture and half engineering
optimization.

We conclude with one last observation: pricing must be a
basic part of any complete ISPN architecture. If all services
are free, there is no incentive to request less than the best
service the network can provide, which will not produce ef-
fective utilization of the network's resources (see Reference
[3] for a discussion of these issues). The sharing model in
existing datagram networks deals with overload by giving
everyone a smaller share; the equivalent in real-time ser-
vices would be to refuse most requests most of the time,
which would be very unsatisfactory. Prices must be intro-
duced so that some clients will request higher jitter service
because of its lower cost. Therefore, real-time services must
be deployed along with some means for accounting.

It is exactly this price discrimination that will make the
predicted service class viable. Certainly predicted service is
less reliable than guaranteed service and, in the absence of
any other incentive, network clients would insist on guaran-
teed service and the network would operate at low levels of
utilization and, presumably, high prices. However, if one can
ensure that the reliability of predicted service is su�ciently
high and the price su�ciently low, many network clients will
prefer to use the predicted service. This will allow ISPN's
to operate at a much higher level of utilization, which then
allows the costs to be spread among a much larger user pop-
ulation.

13 Acknowledgments

This work is an attempt to clarify some ideas which were,
and, to some extent, remain somewhat hazy and elusive.
Any progress we have made is the result of our numerous
discussions with colleagues who, through either vigorous dis-

agreement or constructive agreement, have helped us arrive
at this point. In particular, we would like to thank J. Davin,
S. Deering, D. Estrin, S. Floyd, A. Heybey, V. Jacobson, A.
Parekh, K. Sollins, and J. Wroclawski.

14 Appendix

In our simulations, we use a network simulator written by
one of us (LZ) and used in a number of previous simula-
tion studies ([3, 25, 27]). The sources of real-time tra�c are
two-state Markov processes. In each burst period, a geomet-
rically distributed random number of packets are generated
at some peak rate P ; B is the average size of this burst.
After the burst has been generated, the source remains idle
for some exponentially distributed random time period; I
denotes the average length of an idle period. The average
rate of packet generation A is given by

A
�1 =

I

B
+

1

P

In all the simulations mentioned in this paper, we chose
B = 5 and set P = 2A (implying that I = B=2A), so that
the peak rate was double the average rate. Therefore, the
source is characterized by a single number A. Each tra�c
source was then subjected to an (A; 50) token bucket �lter
(50 is the size of the token bucket) and any nonconforming
packets were dropped at the source; in our simulations about
2% of the packets were dropped, so the true average rate was
around :98A.

In the networks we simulate, each host is connected to
the switch by an in�nitely fast link. All inter-switch links
have bandwidths of 1 Mbit/sec, all switches have bu�ers
which can hold 200 packets, and all packets are 1000 bits.
All the queueing delay measurements are shown in units of
per packet transmission time (1msec) and all data is taken
from simulations covering 10 minutes of simulated time.

For the data in Table 1, we simulated a single-link net-
work; there were 10 ows sharing the link, and the value of
A was 85 packets/sec for all ows. The data in Table 2 is
based on the con�guration in Figure 1 which has 5 switches,
each attached to a host, and four inter-switch links. There
are 22 ows, with each host being the source and/or receiver
of several ows, and all of the network tra�c travelling in
the same direction. Each inter-switch link was shared by 10
ows. There were 12 ows of path length one, 4 ows of
path length two, 4 ows of path length three, and 2 ows of
path length four. The value of A was 85 packets/sec for all
ows.

References

[1] R. Chipalkatti, J. Kurose, and D. Towsley. Scheduling
Policies for Real-Time and Non-Real-Time Tra�c in a
Statistical Multiplexer, In Proceedings of GlobeCom

'89, pp 774-783, 1989.

[2] S. Casner private communication, 1992.

[3] R. Cocchi, D. Estrin, S. Shenker, and L. Zhang. A Study
of Priority Pricing in Multiple Service Class Networks,
In Proceedings of SIGCOMM '91, pp 123-130, 1991.

[4] A. Demers, S. Keshav, and S. Shenker. Analysis and
Simulation of a Fair Queueing Algorithm, In Journal

of Internetworking: Research and Experience, 1, pp.
3-26, 1990. Also in Proc. ACM SIGCOMM '89, pp 3-12.



[5] J. DeTreville and D. Sincoskie. A Distributed Experi-
mental Communications System, In IEEE JSAC, Vol.
1, No. 6, pp 1070-1075, December 1983.

[6] D. Ferrari. Distributed Delay Jitter Control in Packet-

Switching Internetworks, preprint, 1991.

[7] D. Ferrari and D. Verma. A Scheme for Real-Time

Channel Establishment in Wide-Area Networks, In
IEEE JSAC, Vol. 8, No. 4, pp 368-379, April 1990.

[8] S. J. Golestani. A Stop and Go Queueing Framework

for Congestion Management, In Proceedings of SIG-

COMM '90, pp 8-18, 1990.

[9] S. J. Golestani. Duration-Limited Statistical Multiplex-
ing of Delay Sensitive Tra�c in Packet Networks, In
Proceedings of INFOCOM '91, 1991.

[10] R. Gu�erin and L. G�un. A Uni�ed Approach to Band-

width Allocation and Access Control in Fast Packet-
Switched Networks, To appear in Proceedings of IN-

FOCOM '92.

[11] R. Gu�erin, H. Ahmadi, and M. Naghshineh. Equivalent
Capacity and Its Application to Bandwidth Allocation
in High-Speed Networks, In IEEE JSAC, Vol. 9, No. 9,
pp 968-981, September 1991.

[12] J. Hyman and A. Lazar. MARS: The Magnet II Real-

Time Scheduling Algorithm, In Proceedings of SIG-

COMM '91, pp 285-293, 1991.

[13] J. Hyman, A. Lazar, and G. Paci�ci. Real-Time
Scheduling with Quality of Service Constraints, In
IEEE JSAC, Vol. 9, No. 9, pp 1052-1063, September
1991.

[14] V. Jacobson and S. Floyd private communication, 1991.

[15] V. Jacobson private communication, 1991.

[16] C. Kalmanek, H. Kanakia, and S. Keshav. Rate Con-

trolled Servers for Very High-Speed Networks, In Pro-

ceedings of GlobeCom '90, pp 300.3.1-300.3.9, 1990.

[17] C. Liu and J. Layland. Scheduling Algorithms for Mul-
tiprogramming in a Hard Real Time Environment, In
Journal of ACM, 20, pp. 46-61, 1973.

[18] S. Lu and P. R. Kumar. Distributed Scheduling Based
on Due Dates and Bu�er Priorities, In IEEE Transac-

tions on Automatic Control, 36, pp 1406-1416, 1991.

[19] A. Parekh and R. Gallager. A Generalized Processor
Sharing Approach to Flow Control- The Single Node

Case, In Technical Report LIDS-TR-2040, Labo-
ratory for Information and Decision Systems, Mas-
sachusetts Institute of Technology, 1991.

[20] A. Parekh. A Generalized Processor Sharing Approach
to Flow Control in Integrated Services Networks, In
Technical Report LIDS-TR-2089, Laboratory for In-
formation and Decision Systems, Massachusetts Insti-
tute of Technology, 1992.

[21] H. Schulzrinne, J. Kurose, and D. Towsley. Conges-

tion Control for Real-Time Tra�c, In Proceedings of

INFOCOM '90.

[22] D. Verma, H. Zhang, and D. Ferrari. Delay Jitter Con-
trol for Real-Time Communication in a Packet Switch-

ing Network, In Proceedings of TriCom '91, pp 35-43,
1991.

[23] C. Weinstein and J. Forgie. Experience with Speech
Communication in Packet Networks, In IEEE JSAC,
Vol. 1, No. 6, pp 963-980, December 1983.

[24] H. Zhang and S. Keshav. Comparison of Rate-Based

Service Disciplines, In Proceedings of SIGCOMM

'91, pp 113-121, 1991.

[25] L. Zhang. A New Architecture for Packet Switching

Network Protocols, In Technical Report LCS-TR-455,
Laboratory for Computer Science, Massachusetts Insti-
tute of Technology, 1989.

[26] L. Zhang. VirtualClock: A New Tra�c Control Algo-

rithm for Packet Switching Networks, In ACM Trans-

actions on Computer Systems, Vol. 9, No. 2, pp 101-
124, May 1991. Also in Proc. ACM SIGCOMM '90, pp
19-29.

[27] L. Zhang. A Comparison of Tra�c Control Algorithms
for High-Speed Networks, In 2nd Annual Workshop

on Very High Speed Networks, 1991.


