4,085 research outputs found

    5th Generation mobile networks: a new opportunity for the convergence of mobile broadband and broadcast services

    Full text link
    Š 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.[EN] This article analyzes the challenges and opportunities that the upcoming definition of future 5G mobile networks brings to the mobile broadband and broadcast industries to form a single converged network. It reviews the state-of-the-art in mobile and broadcast technologies and the current trends for convergence between both industries. This article describes the requirements and functionalities that the future 5G must address in order to make an efficient and flexible cellular-broadcasting convergence. Both industries would benefit from this convergence by exploiting synergies and enabling an optimum use of spectrum based on coordinated spectrum sharing.The authors would like to thank the funding received from the Spanish Ministry of Science and Innovation within the Project number TEC2011-27723-C02-02.Calabuig Gaspar, J.; Monserrat Del Río, JF.; Gómez Barquero, D. (2015). 5th Generation mobile networks: a new opportunity for the convergence of mobile broadband and broadcast services. IEEE Communications Magazine. 53(2):198-205. https://doi.org/10.1109/MCOM.2015.7045409S19820553

    IEEE Transactions on Broadcasting Special Issue on: 5G for Broadband Multimedia Systems and Broadcasting

    Full text link
    [EN] The upcoming fifth-generation ( 5G ) of wireless communications technologies is expected to revolutionize society digital transformation thanks to its unprecedented wireless performance capabilities, providing speeds of several Gbps, very low latencies well below 5 ms, ultra-reliable transmissions with up to 99.999% success probability, while being able to handle a huge number of devices simultaneously connected to the network. The first version of the 3GPP specification (i.e., Release 15) has been recently completed and many 5G trials are under plan or carrying out worldwide, with the first commercial deployments happening in 2019."Š 2019 IEEE. Personal use of this material is permitted. Permissíon from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertisíng or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works."Gomez-Barquero, D.; Li, W.; Fuentes, M.; Xiong, J.; Araniti, G.; Akamine, C.; Wang, J. (2019). IEEE Transactions on Broadcasting Special Issue on: 5G for Broadband Multimedia Systems and Broadcasting. IEEE Transactions on Broadcasting. 65(2):351-355. https://doi.org/10.1109/TBC.2019.2914866S35135565

    5G: 2020 and Beyond

    Get PDF
    The future society would be ushered in a new communication era with the emergence of 5G. 5G would be significantly different, especially, in terms of architecture and operation in comparison with the previous communication generations (4G, 3G...). This book discusses the various aspects of the architecture, operation, possible challenges, and mechanisms to overcome them. Further, it supports users? interac- tion through communication devices relying on Human Bond Communication and COmmunication-NAvigation- SENsing- SErvices (CONASENSE).Topics broadly covered in this book are; • Wireless Innovative System for Dynamically Operating Mega Communications (WISDOM)• Millimeter Waves and Spectrum Management• Cyber Security• Device to Device Communicatio

    Hybrid Satellite-Terrestrial Communication Networks for the Maritime Internet of Things: Key Technologies, Opportunities, and Challenges

    Get PDF
    With the rapid development of marine activities, there has been an increasing number of maritime mobile terminals, as well as a growing demand for high-speed and ultra-reliable maritime communications to keep them connected. Traditionally, the maritime Internet of Things (IoT) is enabled by maritime satellites. However, satellites are seriously restricted by their high latency and relatively low data rate. As an alternative, shore & island-based base stations (BSs) can be built to extend the coverage of terrestrial networks using fourth-generation (4G), fifth-generation (5G), and beyond 5G services. Unmanned aerial vehicles can also be exploited to serve as aerial maritime BSs. Despite of all these approaches, there are still open issues for an efficient maritime communication network (MCN). For example, due to the complicated electromagnetic propagation environment, the limited geometrically available BS sites, and rigorous service demands from mission-critical applications, conventional communication and networking theories and methods should be tailored for maritime scenarios. Towards this end, we provide a survey on the demand for maritime communications, the state-of-the-art MCNs, and key technologies for enhancing transmission efficiency, extending network coverage, and provisioning maritime-specific services. Future challenges in developing an environment-aware, service-driven, and integrated satellite-air-ground MCN to be smart enough to utilize external auxiliary information, e.g., sea state and atmosphere conditions, are also discussed

    QoS Provisioning in Converged Satellite and Terrestrial Networks: A Survey of the State-of-the-Art

    Get PDF
    It has been widely acknowledged that future networks will need to provide significantly more capacity than current ones in order to deal with the increasing traffic demands of the users. Particularly in regions where optical fibers are unlikely to be deployed due to economical constraints, this is a major challenge. One option to address this issue is to complement existing narrow-band terrestrial networks with additional satellite connections. Satellites cover huge areas, and recent developments have considerably increased the available capacity while decreasing the cost. However, geostationary satellite links have significantly different link characteristics than most terrestrial links, mainly due to the higher signal propagation time, which often renders them not suitable for delay intolerant traffic. This paper surveys the current state-of-the-art of satellite and terrestrial network convergence. We mainly focus on scenarios in which satellite networks complement existing terrestrial infrastructures, i.e., parallel satellite and terrestrial links exist, in order to provide high bandwidth connections while ideally achieving a similar end user quality-of-experience as in high bandwidth terrestrial networks. Thus, we identify the technical challenges associated with the convergence of satellite and terrestrial networks and analyze the related work. Based on this, we identify four key functional building blocks, which are essential to distribute traffic optimally between the terrestrial and the satellite networks. These are the traffic requirement identification function, the link characteristics identification function, as well as the traffic engineering function and the execution function. Afterwards, we survey current network architectures with respect to these key functional building blocks and perform a gap analysis, which shows that all analyzed network architectures require adaptations to effectively support converged satellite and terrestrial networks. Hence, we conclude by formulating several open research questions with respect to satellite and terrestrial network convergence.This work was supported by the BATS Research Project through the European Union Seventh Framework Programme under Contract 317533
    • …
    corecore